, Volume 71, Issue 7, pp 2313–2320 | Cite as

Correlation Between Heat-Treated Microstructure and Mechanical and Fretting Wear Behavior of Electron Beam Freeform-Fabricated Ti6Al4V Alloy

  • Xuewei Tao
  • Zhengjun YaoEmail author
  • Shasha Zhang
  • Zhong Li
  • Yi Xu
Composition-Processing-Microstructure-Property Relationships of Titanium Alloys


Heat treatments have been conducted on electron beam freeform-fabricated (EBF3-ed) Ti6Al4V alloy to obtain desired compressive and antifretting wear performance. The results suggested that the compression and fretting wear properties were significantly affected by the heat-treated microstructure. The subtransus heat treatment used in the present work created a homogeneous and coarser α + β lamellar structure with numerous fine secondary α and nanoscale dispersoids inside. Such structural evolution accounts for the superior compressive property, high hardness, and fretting wear resistance. Additional findings revealed that the fine secondary α and nanoscale dispersoids made a great contribution to the mechanical strengthening and especially passivation of crack propagation. This study shows that the as-received microstructure after EBF3 can be tailored by heat treatment to achieve favorable performance, which is significant for application of Ti6Al4V deposits.



This project was supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX18_0272), Priority Academic Program Development of Jiangsu Higher Education Institutions, Opening Project of Jiangsu Key Laboratory of Advanced Metallic Materials, and Natural Science Foundation for Young Scientists of Jiangsu Province (Grant No. BK20160407). The authors would like to acknowledge Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology for experimental testing.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    H. Shipley, D. McDonnell, M. Culleton, R. Lupoi, G. O’Donnell, and D. Trimble, Int. J. Mach. Tools Manuf. 128, 1 (2018).CrossRefGoogle Scholar
  2. 2.
    X.P. Tan, Y. Kok, Y.J. Tan, M. Descoin, D. Mangelinck, S.B. Tor, K.F. Leong, and C.K. Chua, Acta Mater. 97, 1 (2015).CrossRefGoogle Scholar
  3. 3.
    R.A. Rahman Rashid, S. Palanisamy, H. Attar, M. Bermingham, and M.S. Dargusch, J. Manuf. Process. 35, 651 (2018).CrossRefGoogle Scholar
  4. 4.
    H.B. Suo, Z.Y. Chen, J.R. Liu, S.L. Gong, and J.Z. Xiao, Rare Met. Mater. Eng. 43, 780 (2014).CrossRefGoogle Scholar
  5. 5.
    J. Gocke, J. Beuth, and K. Taminger, Addit. Manuf. 1–4, 119 (2014).CrossRefGoogle Scholar
  6. 6.
    R.W. Bush and C.A. Brice, Mater. Sci. Eng., A 554, 12 (2012).CrossRefGoogle Scholar
  7. 7.
    B. Vrancken, L. Thijs, J.P. Kruth, and J.V. Humbeeck, J. Alloys Compd. 541, 177–185 (2012).CrossRefGoogle Scholar
  8. 8.
    E. Brandl, A. Schoberth, and C. Leyens, Mater. Sci. Eng., A 532, 295 (2012).CrossRefGoogle Scholar
  9. 9.
    N. Chekir, Y. Tian, J.J. Sixsmith, and M. Brochu, Mater. Sci. Eng., A 724, 376 (2018).CrossRefGoogle Scholar
  10. 10.
    G.A. Longhitano, M.A. Larosa, A.L. Jardini, and M.C.F. Ierardi, J. Mater. Process. Technol. 252, 202 (2018).CrossRefGoogle Scholar
  11. 11.
    M.K. Zhang, Y.Q. Yang, D. Wang, Z.F. Xiao, C.H. Song, and C.W. Weng, Mater. Sci. Eng., A 736, 288 (2018).CrossRefGoogle Scholar
  12. 12.
    T. Sercombe, N. Jones, R. Day, and A. Kop, Rapid Prototyp. J. 14, 300 (2008).CrossRefGoogle Scholar
  13. 13.
    Q. Yang, W.L. Zhou, Z.Q. Niu, X.B. Zheng, Q. Wang, X.S. Fu, G.Q. Chen, and Z.Q. Li, Surf. Coat. Technol. 349, 1098 (2018).CrossRefGoogle Scholar
  14. 14.
    G. Li, S.G. Qu, Y.X. Pan, and X.Q. Li, Appl. Surf. Sci. 389, 324 (2016).CrossRefGoogle Scholar
  15. 15.
    X.W. Tao, Z.J. Yao, S.S. Zhang, J. Liao, and J. Liang, Surf. Coat. Technol. 337, 418 (2018).CrossRefGoogle Scholar
  16. 16.
    B. Baufeld, O. van der Biest, and R. Gault, Int. J. Mater. Res. 100, 1536 (2009).CrossRefGoogle Scholar
  17. 17.
    G.A. Longhitano, M.A. Arenas, A. Conde, M.A. Larosa, A.L. Jardini, C.A. de Carvalho Zavaglia, and J.J. Damborenea, J. Alloys Compd. 765, 961 (2018).CrossRefGoogle Scholar
  18. 18.
    S. Palanivel, A.K. Dutt, E.J. Faierson, and R.S. Mishra, Mater. Sci. Eng., A 654, 39 (2016).CrossRefGoogle Scholar
  19. 19.
    T. Vilaro, C. Colin, and J.D. Bartout, Metall. Mater. Trans. A 42, 3190 (2011).CrossRefGoogle Scholar
  20. 20.
    B.J. Hayes, B.W. Martin, B. Welk, S.J. Kuhr, T.K. Ales, D.A. Brice, I. Ghamarian, A.H. Baker, C.V. Haden, D.G. Harlow, H.L. Fraser, and P.C. Collins, Acta Mater. 133, 120 (2017).CrossRefGoogle Scholar
  21. 21.
    J.Y. Cho, W. Xu, M. Brandt, and M. Qian, Opt. Laser Technol. 111, 664 (2019).CrossRefGoogle Scholar
  22. 22.
    H. Attar, S. Ehtemam-Haghighi, D. Kent, I.V. Okulov, H. Wendrock, M. Bönisch, A.S. Volegov, M. Calin, J. Eckert, and M.S. Darguscha, Mater. Sci. Eng., A 688, 20 (2017).CrossRefGoogle Scholar
  23. 23.
    G.Q. Sun, C.W. Wang, X.H. Wei, D.G. Shang, and S.J. Chen, Mater. Sci. Eng., A 739, 71 (2019).CrossRefGoogle Scholar
  24. 24.
    X.W. Tao, Z.J. Yao, and X.X. Luo, J. Alloys Compd. 718, 126 (2017).CrossRefGoogle Scholar
  25. 25.
    S. Bruschi, R. Bertolini, and A. Ghiotti, Tribol. Int. 116, 58 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Key Laboratory of Materials Preparation and Protection for Harsh EnvironmentMinistry of Industry and Information TechnologyNanjingChina
  3. 3.Department of Chemistry and Materials EngineeringChangshu Institute of TechnologyChangshuChina

Personalised recommendations