Advertisement

JOM

pp 1–10 | Cite as

Composition-Dependent Microstructure-Property Relationships of Fe and Al Modified Ti-12Cr (wt.%)

  • J. Ballor
  • M. Ikeda
  • E. J. Kautz
  • C. J. BoehlertEmail author
  • A. DevarajEmail author
Composition-Processing-Microstructure-Property Relationships of Titanium Alloys
  • 31 Downloads

Abstract

β-Titanium (Ti) alloys have applications in several industries (e.g. aerospace, automotive, and biomedical) where material performance requirements vary widely. To tailor the microstructure and mechanical properties of β-Ti alloys for various applications, it is critical to understand the influence of individual alloying elements. Toward this goal, we investigated the effect of individual alloying additions on the microstructure and resultant mechanical properties of four model β-Ti alloys: Ti-12Cr, Ti-12Cr-3Al, Ti-12Cr-1Fe, and Ti-12Cr-1Fe-3Al (wt.%). The microstructures of these alloys were studied using x-ray diffraction, electron microscopy, and atom probe tomography. The mechanical properties were analyzed via Vickers and Rockwell hardness measurements and tensile testing. The addition of 1 wt.% Fe resulted in an approximate 5% increase in elongation-to-failure (εf), while the addition of 3 wt.% Al did not appear to significantly affect εf. The addition of Fe and Al decreased the yield and ultimate tensile strengths.

Notes

Acknowledgements

This material is based in part on work supported by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under contract number DE-SC0014664. The funding for the alloy processing, mechanical testing metallographic preparation and XRD was supported by National Science Foundation Division of Material Research (Grant No. DMR1607942) through the Metals and Metallic Nanostructures (MMN) program. A.D. would like to acknowledge the funding support from Pacific Northwest National Laboratories laboratory directed research and development (LDRD) program as a part of physical and computational sciences directorate seed LDRD. The microstructural characterization using SEM and APT was performed using facilities at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The authors also acknowledge the assistance of Ms. Afnan Albatati with the hardness measurements and Dr. Vahid Khademi for helpful discussions.

Supplementary material

11837_2019_3467_MOESM1_ESM.docx (764 kb)
Supplementary material 1 (DOCX 764 kb)

References

  1. 1.
    S.L. Nyakana, J.C. Fanning, and R.R. Boyer, J. Mater. Eng. Perform. 14, 799 (2005).CrossRefGoogle Scholar
  2. 2.
    R. Kolli and A. Devaraj, Metals 8, 506 (2018).CrossRefGoogle Scholar
  3. 3.
    J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J.C. Fanning, JOM 67, 1281 (2015).CrossRefGoogle Scholar
  4. 4.
    R.R. Boyer and R.D. Briggs, J. Mater. Eng. Perform. 14, 681 (2005).CrossRefGoogle Scholar
  5. 5.
    K. Faller and F.H.S. Froes, JOM 53, 27 (2001).CrossRefGoogle Scholar
  6. 6.
    A.R. Morris, Deslination 31, 387 (1979).CrossRefGoogle Scholar
  7. 7.
    M. Niinomi and C.J. Boehlert, in Advances in Metallic Biomaterials, chap. 8, vol. 3 (2015), pp. 179–213.  https://doi.org/10.1007/978-3-662-46836-4_8.
  8. 8.
    F.H. Froes, H. Friedrich, J. Kiese, and D. Bergoint, JOM 56, 40 (2004).CrossRefGoogle Scholar
  9. 9.
    W.F. Smith, Structure and Properties of Engineering Alloys, 2nd ed. (New York: McGraw-Hill, 1993), pp. 411–457.Google Scholar
  10. 10.
    G. Lütjering and J.C. Williams, Titanium, 2nd ed. (Berlin: Springer, 2007).Google Scholar
  11. 11.
    M. Ikeda, S. Komatsu, M. Ueda, and A. Suzuki, Mater. Trans. 45, 1566 (2004).CrossRefGoogle Scholar
  12. 12.
    L.M. Gammon, R.D. Briggs, J.M. Packard, K.W. Batson, R. Boyer, and C.W. Domby, ASM Handbook, vol. 9, pp. 899–917.  https://doi.org/10.1361/asmhba0003779.
  13. 13.
    A. Devaraj, D.E. Perea, J. Liu, L.M. Gordon, T.J. Prosa, P. Parikh, D.R. Diercks, S. Meher, R.P. Kolli, Y.S. Meng, and S. Thevuthasan, Int. Mater. Rev. 63, 68 (2018).CrossRefGoogle Scholar
  14. 14.
    S. Nag, R. Banerjee, J.Y. Hwang, M. Harper, and H.L. Fraser, Philos. Mag. 89, 535 (2009).CrossRefGoogle Scholar
  15. 15.
    E04 Committee, Test Methods for Determining Average Grain Size (ASTM International, n.d.).Google Scholar
  16. 16.
    W. Zhou, R.P. Apkarian, Z.L. Wang, and D. Joy, Scanning Microscopy for Nanotechnology, ed. W. Zhou and Z.L. Wang (New York, NY: Springer, 2006).Google Scholar
  17. 17.
    A. Devaraj, V.V. Joshi, A. Srivastava, S. Manandhar, V. Moxson, V.A. Duz, and C. Lavender, Nat. Commun. 7, 11176 (2016).CrossRefGoogle Scholar
  18. 18.
    Y. Chang, A.J. Breen, Z. Tarzimoghadam, P. Kürnsteiner, H. Gardner, A. Ackerman, A. Radecka, P.A.J. Bagot, W. Lu, T. Li, E.A. Jägle, M. Herbig, L.T. Stephenson, M.P. Moody, D. Rugg, D. Dye, D. Ponge, D. Raabe, and B. Gault, Acta Mater. 150, 273 (2018).CrossRefGoogle Scholar
  19. 19.
    R.P. Kolli, Adv. Struct. Chem. Imaging 3, 10 (2017).  https://doi.org/10.1186/s40679-017-0043-4.CrossRefGoogle Scholar
  20. 20.
    B. Gault, eds., Atom Probe Microscopy (New York: Springer, 2012).Google Scholar
  21. 21.
    J.M. Cairney, K. Rajan, D. Haley, B. Gault, P.A.J. Bagot, P.-P. Choi, P.J. Felfer, S.P. Ringer, R.K.W. Marceau, and M.P. Moody, Ultramicroscopy 159, 324 (2015).CrossRefGoogle Scholar
  22. 22.
    A. Devaraj, T.C. Kaspar, S. Ramanan, S. Walvekar, M.E. Bowden, V. Shutthanandan, and R.J. Kurtz, J. Appl. Phys. 116, 193512 (2014).CrossRefGoogle Scholar
  23. 23.
    A. Devaraj, M. Gu, R. Colby, P. Yan, C.M. Wang, J.M. Zheng, J. Xiao, A. Genc, J.G. Zhang, I. Belharouak, D. Wang, K. Amine, and S. Thevuthasan, Nat. Commun. 6, 8104 (2015).CrossRefGoogle Scholar
  24. 24.
    M.P. Moody, L.T. Stephenson, A.V. Ceguerra, and S.P. Ringer, Microsc. Res. Tech. 71, 542 (2008).CrossRefGoogle Scholar
  25. 25.
    D. Doraiswamy and S. Ankem, Acta Mater. 51, 1607 (2003).CrossRefGoogle Scholar
  26. 26.
    S. Hanada and O. Izumi, Metall. Trans. A 18A, 265 (1987).CrossRefGoogle Scholar
  27. 27.
    A. Jaworski and S. Ankem, J. Mater. Eng. Perform. 14, 755 (2005).CrossRefGoogle Scholar
  28. 28.
    M. Ahmed, D. Wexler, G. Casillas, O.M. Ivasishin, and E.V. Pereloma, Acta Mater. 84, 124 (2015).CrossRefGoogle Scholar
  29. 29.
    X.L. Wang, L. Li, W. Mei, W.L. Wang, and J. Sun, Mater. Charact. 107, 149 (2015).CrossRefGoogle Scholar
  30. 30.
    R.P. Kolli, W.J. Joost, and S. Ankem, JOM 67, 1273 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA
  2. 2.Department of Chemistry and Materials Engineering Faculty of Chemistry, Materials and BioengineeringKansai UniversityOsakaJapan
  3. 3.National Security DirectoratePacific Northwest National LaboratoryRichlandUSA
  4. 4.Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandUSA

Personalised recommendations