Advertisement

JOM

, Volume 71, Issue 7, pp 2280–2290 | Cite as

Tension–Compression Asymmetry of Commercially Pure Titanium: Strain Rate Sensitivity and Microstructure Evolution

  • Jiahui Tao
  • Boqin GuEmail author
  • Lili Chen
  • Jianfeng Zhou
Composition-Processing-Microstructure-Property Relationships of Titanium Alloys
  • 252 Downloads

Abstract

The behavior of hot-rolled commercially pure titanium under tension and compression was investigated at different strain rates, specifically from 1 × 10−5 s−1 to 5 × 10−3 s−1, at room temperature. Strong tension–compression asymmetry in yielding and strain hardening and its sensitivity to the strain rate were observed. With the increase of strain rate, the asymmetry in yielding and strain hardening increased because of the different strain rate sensitivity during tension and compression. Electron backscattered diffraction analysis was conducted to capture the relation between the microstructure evolutions (including twinning and texture evolution) and the macrostructure responses. The results showed that the microstructure texture had changed and a new component produced during compression was perpendicular to the rolling direction, which was associated with the formation of \( \left\{ {10\bar{1}2} \right\} \) extension twins. The fraction of twins activated during compression was much higher than that produced during tension. Specifically, the \( \left\{ {10\bar{1}2} \right\} \) twinning accommodated for the compressive deformation and played a major role in compressive strain hardening, whereas the dislocation mediated the plasticity under tension. The dominant twinning activity following the Basinski hardening mechanism, and the texture evolution affected by the dislocation slip and deformation twinning were responsible for the tension–compression asymmetry in the commercially pure titanium.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51375223), the National Key Research and Development Plan of China (Grant No. 2017YFF0210405) and Jiangsu Province Ordinary University Graduate Research and Innovation (Grant No. KYCX17_0934).

Supplementary material

11837_2019_3466_MOESM1_ESM.pdf (95 kb)
Supplementary material 1 (PDF 94 kb)

References

  1. 1.
    P. Singh, H. Pungotra, and N.S. Kalsi, Mater. Today Proc. 4, 8971 (2017).CrossRefGoogle Scholar
  2. 2.
    X. Huang, K. Suzuki, M. Yuasa, and Y. Chino, J. Mater. Sci. 49, 3166 (2014).CrossRefGoogle Scholar
  3. 3.
    V. Tuninetti, G. Gilles, O. Milis, T. Pardoen, and A.M. Habraken, Int. J. Plast. 67, 53 (2015).CrossRefGoogle Scholar
  4. 4.
    M. Uranagase and R. Matsumoto, Comput. Mater. Sci. 118, 124 (2016).CrossRefGoogle Scholar
  5. 5.
    O. Cazacu, I.R. Ionescu, and J.W. Yoon, Int. J. Plast. 26, 887 (2010).CrossRefGoogle Scholar
  6. 6.
    H. Li, H.Q. Zhang, H. Yang, M.W. Fu, and H. Yang, Int. J. Plast. 90, 177 (2017).CrossRefGoogle Scholar
  7. 7.
    H. Li, X. Hu, H. Yang, and L. Li, Int. J. Plast. 82, 127 (2016).CrossRefGoogle Scholar
  8. 8.
    A.S. Khan, S. Yu, and H. Liu, Int. J. Plast. 38, 14 (2012).CrossRefGoogle Scholar
  9. 9.
    Q. Zhang, J. Zhang, and Y. Wang, Mater. Des. 61, 281 (2014).CrossRefGoogle Scholar
  10. 10.
    Z. Zachariah, S.S.V. Tatiparti, S.K. Mishra, N. Ramakrishnan, and U. Ramamurty, Mater. Sci. Eng. A 572, 8 (2013).CrossRefGoogle Scholar
  11. 11.
    T. Neeraj, M.F. Savage, J. Tatalovich, L. Kovarik, R.W. Hayes, M.J. Mills, M.F. Savage, J. Tatalovich, L. Kovarik, R.W. Hayes, and M.J. Mills, Philos. Mag. 85, 279 (2005).CrossRefGoogle Scholar
  12. 12.
    M.E. Nixon, O. Cazacu, and R.A. Lebensohn, Int. J. Plast. 26, 516 (2010).CrossRefGoogle Scholar
  13. 13.
    D. Shechtman and D.G. Brandon, J. Mater. Sci. 8, 1233 (1973).CrossRefGoogle Scholar
  14. 14.
    A. Akhtar and E. Teghtsoonian, Metall. Mater. Trans. A 6, 2201 (1975).CrossRefGoogle Scholar
  15. 15.
    H. Chowdhury, K. Naumenko, H. Altenbach, and M. Krüger, Mater. Sci. Eng. A 700, 503 (2017).CrossRefGoogle Scholar
  16. 16.
    P. Lin, Y. Hao, B. Zhang, S. Zhang, C. Chi, and J. Shen, Mater. Sci. Eng. A 707, 172 (2017).CrossRefGoogle Scholar
  17. 17.
    S. Xu, C. Schuman, and J.S. Lecomte, Scr. Mater. 116, 152 (2016).CrossRefGoogle Scholar
  18. 18.
    S.I. Lee, J.S. Kim, S.J. Park, S.H. Park, and J. Yoon, Mater. Des. 110, 510 (2016).CrossRefGoogle Scholar
  19. 19.
    K. Ahn, H. Huh, and J. Yoon, Int. J. Mech. Sci. 98, 80 (2015).CrossRefGoogle Scholar
  20. 20.
    S.V. Kailas, Y.V.R.K. Prasad, and S.K. Biswas, Met. Mater. Trans. A 25, 1425 (1994).CrossRefGoogle Scholar
  21. 21.
    J. Sun, L. Jin, S. Dong, Z. Zhang, and J. Dong, Mater. Lett. 107, 197 (2013).CrossRefGoogle Scholar
  22. 22.
    B. Shi, Y. Peng, C. Yang, F. Pan, R. Cheng, and Q. Peng, Int. J. Plast. 90, 76 (2017).CrossRefGoogle Scholar
  23. 23.
    H. Qiao, X.Q. Guo, S.G. Hong, and P.D. Wu, J. Alloys Compd. 725, 96 (2017).CrossRefGoogle Scholar
  24. 24.
    L.L. Chang and L.P. Chi, Mater. Sci. Forum 849, 109 (2016).CrossRefGoogle Scholar
  25. 25.
    H. Watanabe and K. Ishikawa, Mater. Sci. Eng. A 523, 304 (2009).CrossRefGoogle Scholar
  26. 26.
    Y.N. Wang and J.C. Huang, Mater. Chem. Phys. 81, 11 (2003).CrossRefGoogle Scholar
  27. 27.
    A. Roth, M.A. Lebyodkin, T.A. Lebedkina, J.S. Lecomte, T. Richeton, and K.E.K. Amouzou, Mater. Sci. Eng. A 596, 236 (2014).CrossRefGoogle Scholar
  28. 28.
    F. Xu, X. Zhang, H. Ni, Y. Cheng, Y. Zhu, and Q. Liu, Mater. Sci. Eng. A 564, 22 (2013).CrossRefGoogle Scholar
  29. 29.
    Y.X. Tian, G. Wang, S. Yu, and Z.T. Yu, J. Mater. Sci. 50, 5165 (2015).CrossRefGoogle Scholar
  30. 30.
    Z. Zeng, Y. Zhang, and S. Jonsson, Mater. Des. 30, 3105 (2009).CrossRefGoogle Scholar
  31. 31.
    S. Bouvier, N. Benmhenni, W. Tirry, F. Gregory, M.E. Nixon, O. Cazacu, and L. Rabet, Mater. Sci. Eng. A 535, 12 (2012).CrossRefGoogle Scholar
  32. 32.
    D.L. Yin, J.T. Wang, J.Q. Liu, and X. Zhao, J. Alloys Compd. 478, 789 (2009).CrossRefGoogle Scholar
  33. 33.
    Z. Zeng, S. Jonsson, and H.J. Roven, Acta Mater. 57, 5822 (2009).CrossRefGoogle Scholar
  34. 34.
    N. Bozzolo, N. Dewobroto, H.R. Wenk, and F. Wagner, J. Mater. Sci. 42, 2405 (2007).CrossRefGoogle Scholar
  35. 35.
    G. Mann, J.R. Griffiths, and C.H. Cáceres, J. Alloys Compd. 378, 188 (2004).CrossRefGoogle Scholar
  36. 36.
    G. Gilles, W. Hammami, V. Libertiaux, O. Cazacu, J.H. Yoon, T. Kuwabara, A.M. Habraken, and L. Duchêne, Int. J. Solids Struct. 48, 1277 (2011).CrossRefGoogle Scholar
  37. 37.
    S. Xu, L.S. Toth, C. Schuman, J.S. Lecomte, and M.R. Barnett, Acta Mater. 124, 59 (2017).CrossRefGoogle Scholar
  38. 38.
    T. Hama, A. Kobuki, and H. Takuda, Int. J. Plast. 91, 77 (2017).CrossRefGoogle Scholar
  39. 39.
    J.W. Won, C.H. Park, S.G. Hong, and C.S. Lee, J. Alloys Compd. 651, 245 (2015).CrossRefGoogle Scholar
  40. 40.
    A.A. Salem, S.R. Kalidindi, R.D. Doherty, and S.L. Semiatin, Metall. Mater. Trans. A 37, 259 (2006).CrossRefGoogle Scholar
  41. 41.
    H. Chen, F. Li, S. Zhou, J. Li, C. Zhao, and Q. Wan, Mater. Sci. Eng. A 680, 278 (2017).CrossRefGoogle Scholar
  42. 42.
    S. Wang, C. Schuman, L. Bao, J.S. Lecomte, Y. Zhang, and J.M. Raulot, Acta Mater. 60, 3912 (2012).CrossRefGoogle Scholar
  43. 43.
    S. Wang, Y. Zhang, C. Schuman, J.S. Lecomte, X. Zhao, L. Zuo, M.J. Philippe, and C. Esling, Acta Mater. 82, 424 (2015).CrossRefGoogle Scholar
  44. 44.
    Z.S. Basinski, M.S. Szczerba, M. Niewczas, J.D. Embury, and S.J. Basinski, Rev. Met. Paris 94, 1037 (1997).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Jiahui Tao
    • 1
  • Boqin Gu
    • 1
    Email author
  • Lili Chen
    • 1
  • Jianfeng Zhou
    • 1
  1. 1.School of Mechanical and Power EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations