Advertisement

JOM

pp 1–7 | Cite as

Magnetic-Field-Induced Partial-to-Full Penetration Evolution and Its Mechanism During Laser Welding

  • Jiajun Xu
  • Youmin Rong
  • Yu HuangEmail author
Composition-Processing-Microstructure-Property Relationships of Titanium Alloys
  • 23 Downloads

Abstract

The geometry and tensile strength of magnetic-field-assisted laser-welded Ti-6Al-4V joints have been studied. Due to the effects of the magnetic field on the melt flow behavior during welding, the weld penetration depth increased from 4.27 mm (partial penetration) to 5.00 mm (full penetration) and the curvature of the weld cross-section decreased, improving the weld tensile strength. The fusion zone was enlarged, showing a maximum increase of 53.4% in area when the magnetic field intensity was 90 mT. The increased penetration depth and fusion zone area suggest that application of a magnetic field can improve the energy utilization of the laser during laser butt welding. The mechanism of the magnetic-field-induced penetration depth evolution is discussed. This study provides a new energy-saving method to obtain a full-penetration weld using laser welding at lower power.

Notes

Acknowledgements

This research was supported by the National Basic Research Program of China (2014CB046703), the China Postdoctoral Science Foundation (2017M622427), the Postdoctoral Preferential Funding Projects of Hubei Province (G14), the Major Project of Science and Technology Innovation Special for Hubei Province (2016AAA070), the National Natural Science Foundation of China (51421062), and the Huanghe special plan of outstanding talents in Wuhan.

Supplementary material

11837_2019_3462_MOESM1_ESM.pdf (339 kb)
Supplementary material 1 (PDF 339 kb)

References

  1. 1.
    Y. Ai, P. Jiang, X. Shao, P. Li, C. Wang, G. Mi, S. Geng, Y. Liu, and W. Liu, Appl. Therm. Eng. 113, 980 (2017).CrossRefGoogle Scholar
  2. 2.
    N. Kashaev, V. Ventzke, V. Fomichev, F. Fomin, and S. Riekehr, Opt. Lasers Eng. 86, 172 (2016).CrossRefGoogle Scholar
  3. 3.
    A. Squillace, U. Prisco, S. Ciliberto, and A. Astarita, J. Mater. Process. Technol. 212, 427 (2012).CrossRefGoogle Scholar
  4. 4.
    S. Liu, G. Mi, F. Yan, C. Wang, and P. Jiang, Opt. Laser Technol. 94, 59 (2017).CrossRefGoogle Scholar
  5. 5.
    S. Liu, G. Mi, F. Yan, C. Wang, and P. Li, Opt. Laser Technol. 102, 100 (2018).CrossRefGoogle Scholar
  6. 6.
    Z. Gao, P. Jiang, G. Mi, L. Cao, and W. Liu, Int. J. Heat Mass Transf. 116, 1304 (2018).CrossRefGoogle Scholar
  7. 7.
    S. Li, G. Chen, and C. Zhou, Int. J. Adv. Manuf. Technol. 79, 177 (2015).CrossRefGoogle Scholar
  8. 8.
    J. Ahn, L. Chen, C.M. Davies, and J.P. Dear, Opt. Lasers Eng. 86, 156 (2016).CrossRefGoogle Scholar
  9. 9.
    X. Cao and M. Jahazi, Opt. Lasers Eng. 47, 1231 (2009).CrossRefGoogle Scholar
  10. 10.
    W.A. Ayoola, W.J. Suder, and S.W. Williams, J. Mater. Process. Technol. 249, 522 (2017).CrossRefGoogle Scholar
  11. 11.
    Y. Rong, Z. Zhang, G. Zhang, C. Yue, Y. Gu, Y. Huang, C. Wang, and X. Shao, Opt. Lasers Eng. 67, 94 (2015).CrossRefGoogle Scholar
  12. 12.
    Q. Zhou, Y. Yang, P. Jiang, X. Shao, L. Cao, J. Hu, Z. Gao, and C. Wang, Adv. Eng. Softw. 110, 85 (2017).CrossRefGoogle Scholar
  13. 13.
    Q. Zhou, Y. Wang, S.K. Choi, L. Cao, and Z. Gao, Appl. Therm. Eng. 129, 893 (2018).CrossRefGoogle Scholar
  14. 14.
    M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmeier, J. Phys. D. Appl. Phys. 45, 035201 (2012).CrossRefGoogle Scholar
  15. 15.
    M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmeier, Int. J. Therm. Sci. 101, 24 (2016).CrossRefGoogle Scholar
  16. 16.
    J. Chen, Y. Wei, X. Zhan, Q. Gao, D. Zhang, and X. Gao, Opt. Laser Technol. 104, 148 (2018).CrossRefGoogle Scholar
  17. 17.
    J. Chen, Y. Wei, X. Zhan, Y. Li, W. Ou, and T. Zhang, J. Mater. Process. Technol. 254, 325 (2018).CrossRefGoogle Scholar
  18. 18.
    M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmeier, J. Mater. Process. Technol. 214, 578 (2014).CrossRefGoogle Scholar
  19. 19.
    M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmeier, Int. J. Heat Mass Transf. 60, 309 (2013).CrossRefGoogle Scholar
  20. 20.
    Y. Rong, Y. Huang, J. Xu, H. Zheng, and G. Zhang, J. Mater. Process. Technol. 245, 270 (2017).CrossRefGoogle Scholar
  21. 21.
    R. Chen, C. Wang, P. Jiang, X. Shao, Z. Zhao, Z. Gao, and C. Yue, Mater. Des. 109, 146 (2016).CrossRefGoogle Scholar
  22. 22.
    V. Avilov, A. Fritzsche, M. Bachmann, A. Gumenyuk, and M. Rethmeier, J. Laser Appl. 28, 571 (2016).CrossRefGoogle Scholar
  23. 23.
    M. Bachmann, R. Kunze, V. Avilov, and M. Rethmeier, J. Laser Appl. 28, 022404 (2016).CrossRefGoogle Scholar
  24. 24.
    V.V. Avilov, A. Gumenyuk, M. Lammers, and M. Rethmeier, Sci. Technol. Weld. Join. 17, 128 (2012).CrossRefGoogle Scholar
  25. 25.
    M. Schaefer, S. Kessler, F. Fetzer, and T. Graf, J. Laser Appl. 29, 012010 (2017).CrossRefGoogle Scholar
  26. 26.
    S. Pang, L. Chen, J. Zhou, Y. Yin, and T. Chen, J. Phys. D. Appl. Phys. 44, 025301 (2011).CrossRefGoogle Scholar
  27. 27.
    J. Peng, L. Li, S. Lin, F. Zhang, Q. Pan, and S. Katayama, Math. Probl. Eng. 2016, 1409872 (2016).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.State Key Lab of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
  3. 3.School of Material Science and EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations