Advertisement

JOM

pp 1–9 | Cite as

A Comparative Study on the Effect of Four-Source Ultrasonic Power on the Microstructure and Mechanical Properties of Large-Scale 2219 Aluminum Ingots

  • Li Zhang
  • Ruiqing LiEmail author
  • Ripeng Jiang
  • Lihua Zhang
  • Xiaoqian Li
Aluminum and Magnesium: High Strength Alloys for Automotive and Transportation Applications
  • 40 Downloads

Abstract

High-intensity ultrasound was introduced into the direct chill casting of large-scale 2219 aluminum alloy ingots (1380 mm in diameter and 4600 mm in length). The effects of four-source ultrasonic irradiation with various powers on the morphologies, size of α-Al grains and Al2Cu precipitated phase as well as the mechanical properties of the ingots were compared. The results indicated that, when the total real-time power of the ultrasonic system was maintained at 4030 W, a grain-refined structure with a more uniformly dispersed Al2Cu precipitated phase was obtained in the ingot. The mechanical properties of the ingot cast under a total power of 4030 W was also better than the ingots cast under 3600 W and 4420 W. It was found that the stress concentration caused by large area of coarse Al2Cu phase in the ingots under 3600 W and 4420 W resulted in the deterioration of mechanical properties.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. U1637601, No. 51475480, No. 51575539), the State Key Laboratory of High Performance Complex Manufacturing of Central South University (Contract No. ZZYJKT2017-01) and the Project of Innovation-driven Plan for Postgraduate in Central South University (No. 2017zzts104).

References

  1. 1.
    I.J. Polmear, Light Alloys, 3rd ed. (London: Arnold, 1995), p. 250.Google Scholar
  2. 2.
    R.S. Shevell, Fundamentals of Flight, 2nd ed. (Englewood Cliffs: Prentice Hall, 1989), pp. 120–319.Google Scholar
  3. 3.
    W.O. Soboyejo and T.S. Srivatsan, Advanced Structural Materials: Properties, Design Optimization, and Applications, 1st ed. (Boca Raton: CRC, 2006).CrossRefGoogle Scholar
  4. 4.
    G.I. Eskin and D.G. Eskin, Ultrasonic Treatment of Light Alloy Melts, 2nd ed. (Boca Raton: CRC, 2014).CrossRefGoogle Scholar
  5. 5.
    O.V. Abramov, High-Intensity Ultrasonics: Theory and Industrial Applications, 1st ed. (Boca Raton: CRC, 1999), pp. 200–217.Google Scholar
  6. 6.
    G.I. Eskin, Z. Metallkd. 93, 502 (2002).CrossRefGoogle Scholar
  7. 7.
    A.M. El-Aziz, M.A. El-Hady, and W. Khlifa, Light Metals, ed. E. Williams (New York: Springer, 2016), p. 721.Google Scholar
  8. 8.
    L.H. Zhang, J. Yu, X.M. Zhang, and J. Cent, South Univ. 17, 431 (2010).CrossRefGoogle Scholar
  9. 9.
    G. Zhong, S.S. Wu, H.W. Jiang, and A. Pan, J. Alloys Compd. 492, 482 (2010).CrossRefGoogle Scholar
  10. 10.
    R.Q. Li, Z.L. Liu, P.H. Chen, Z.T. Zhong, and X.Q. Li, Adv. Eng. Mater. 19, 1600375 (2017).CrossRefGoogle Scholar
  11. 11.
    R.Q. Li, Z.L. Liu, F. Dong, X.Q. Li, and P.H. Chen, Metall. Mater. Trans. A 47, 3790 (2016).CrossRefGoogle Scholar
  12. 12.
    V.M. Sreekumar and D.G. Eskin, JOM 68, 3088 (2016).CrossRefGoogle Scholar
  13. 13.
    O. Kudryashova and S. Vorozhtsov, JOM 68, 1307 (2016).CrossRefGoogle Scholar
  14. 14.
    H.R. Kotadia, M. Qian, D.G. Eskin, and A. Das, Mater. Des. 132, 266 (2017).CrossRefGoogle Scholar
  15. 15.
    G. Wang, M.S. Dargusch, M. Qian, D.G. Eskin, and D.H. StJohn, J. Cryst. Growth 408, 119 (2014).CrossRefGoogle Scholar
  16. 16.
    L. Zhang, D.G. Eskin, and L. Katgerman, J. Mater. Sci. 46, 5252 (2011).CrossRefGoogle Scholar
  17. 17.
    F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, and M.X. Zhang, Acta Mater. 61, 360 (2013).CrossRefGoogle Scholar
  18. 18.
    F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, and M.X. Zhang, J. Appl. Cryst. 47, 770 (2014).CrossRefGoogle Scholar
  19. 19.
    D.M. Gao, Z.J. Li, Q.Y. Han, and Q.J. Zhai, Mater. Sci. Eng. A 502, 2 (2009).CrossRefGoogle Scholar
  20. 20.
    J. Campbell, Int. Met. Rev. 26, 71 (1981).CrossRefGoogle Scholar
  21. 21.
    B.E. Noltingk and E.A. Neppiras, Proc. Phys. Soc. Lond. B 63, 647 (1950).CrossRefGoogle Scholar
  22. 22.
    L. Rayleigh, Philos. Mag. 34, 941 (1917).Google Scholar
  23. 23.
    G.I. Eskin and D.G. Eskin, Ultrason. Sonochem. 10, 297 (2003).CrossRefGoogle Scholar
  24. 24.
    X.G. Fang, S.S. Wu, Z. Li, S.L. Lü, and P. An, Rare Met. Mater. Eng. 45, 7 (2016).CrossRefGoogle Scholar
  25. 25.
    X.B. Liu, Y. Osawa, S. Takamori, and T. Mukai, Mater. Lett. 62, 2872 (2008).CrossRefGoogle Scholar
  26. 26.
    M.K. Aghayani and B. Niroumand, J. Alloys Compd. 509, 114 (2011).CrossRefGoogle Scholar
  27. 27.
    J.W. Kang, X.F. Sun, K.K. Deng, F.J. Xu, X. Zhang, and Y. Bai, Mater. Sci. Eng. A 697, 211 (2017).CrossRefGoogle Scholar
  28. 28.
    G.M. Ludtka and D.E. Laughlin, Metall. Trans. A 13, 411 (1982).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Research Institute of Light AlloyCentral South UniversityChangshaChina
  2. 2.State Key Laboratory of High Performance Complex ManufacturingChangshaChina
  3. 3.School of Mechanical and Electrical EngineeringCentral South UniversityChangshaChina

Personalised recommendations