Advertisement

JOM

pp 1–8 | Cite as

Evaluation of Factors on Removing Boron from Silicon by Slag Refining Under Atmospheric Conditions

  • Haoran Cheng
  • Songsheng ZhengEmail author
  • Chao ChenEmail author
Technical Article
  • 37 Downloads

Abstract

Upgraded metallurgical grade silicon (Si) is available for high-efficiency solar cells. In the present article, Si refining with CaO-SiO2-CaF2 slags is carried out under open atmosphere, and orthogonal analysis is applied to evaluate the influencing factors. The results show that the influence order of the objective factors is: (1) slag/Si ratio > (2) refining time > (3) original slag basicity > (4) CaF2 content and that the slag/Si ratio acts as the key factor in boron removal. It is observed that boron decreases effectively within 30 min refining period. Moreover, the slags are pulverized when the basicity is > 1.39 because of the β-γ phase transition of Ca2SiO4, and the pulverization is beneficial to the separation of Si from slag.

Notes

Acknowledgements

This work was supported by funding from the ShangNan ZhongJian Industrial Co., Ltd., in Shaanxi Province and Project of Natural Science Foundation of Fujian Province (Grant No. 2014J01209). The authors thank Ms. Karen Doyle, JOM Editorial Office, and Dr. Tao Wang, Subject Editor, for sincere help. The authors especially thank Associate Professor Qijin Cheng and research scientist Dr. Song He for the English revision.

References

  1. 1.
    N.S. Lewis and D.G. Nocera, Proc. Natl. Acad. Sci. USA 103, 15729 (2006).CrossRefGoogle Scholar
  2. 2.
    A.C. Goodrich, D.M. Powell, T.L. James, M. Woodhouse, and T. Buonassisi, Energy Environ. Sci. 6, 2811 (2013).CrossRefGoogle Scholar
  3. 3.
    P. Zheng, F.E. Rougieux, X. Zhang, J. Degoulange, R. Einhaus, P. Rivat, and D.H. Macdonald, IEEE J. Photovolt. 7, 58 (2017).CrossRefGoogle Scholar
  4. 4.
    X. Yang, J. Bian, Z. Liu, S. Li, C. Chen and S. He, Adv. OptoElectron. 2018, 1 (2018).CrossRefGoogle Scholar
  5. 5.
    H. Sasaki, Y. Kobashi, T. Nagai, and M. Maeda, Adv. Mater. Sci. Eng. 2013, 1 (2013).CrossRefGoogle Scholar
  6. 6.
    A. Ciftja, JOM 64, 1 (2012).CrossRefGoogle Scholar
  7. 7.
    M.D. Johnston, L.T. Khajavi, M. Li, S. Sokhanvaran, and M. Barati, JOM 64, 935 (2012).CrossRefGoogle Scholar
  8. 8.
    Y. Tan, S. Qin, S. Wen, J. Li, S. Shi, D. Jiang, and D. Pang, Mater. Sci. Semicond. Process. 18, 42 (2014).CrossRefGoogle Scholar
  9. 9.
    S.S. Zheng, W.H. Chen, J. Cai, J.T. Li, C. Chen, and X.T. Luo, Metall. Mater. Trans. B 41, 1268 (2010).CrossRefGoogle Scholar
  10. 10.
    S.S. Zheng, T.A. Engh, M. Tangstad, and X.T. Luo, Sep. Purif. Technol. 82, 128 (2011).CrossRefGoogle Scholar
  11. 11.
    S.S. Zheng, J. Safarian, S. Seongho, K. Sungwook, T. Merete, and X.T. Luo, Trans. Nonferrous Met. Soc. China 21, 697 (2011).CrossRefGoogle Scholar
  12. 12.
    T. Yoshikawa and K. Morita, JOM 64, 946 (2012).CrossRefGoogle Scholar
  13. 13.
    M.D. Johnston and M. Barati, Sep. Purif. Technol. 107, 129 (2013).CrossRefGoogle Scholar
  14. 14.
    M. Li, T. Utigard, and M. Barati, Metall. Mater. Trans. B 45, 221 (2014).CrossRefGoogle Scholar
  15. 15.
    F.L. He, S.S. Zheng, and C. Chen, Metall. Mater. Trans. B 43, 1011 (2012).CrossRefGoogle Scholar
  16. 16.
    H. Cheng, S. Zheng, and C. Chen, Sep. Purif. Technol. 201, 60 (2018).CrossRefGoogle Scholar
  17. 17.
    C. Alemany, C. Trassy, B. Pateyron, K.I. Li, and Y. Delannoy, Sol. Energy Mater. Sol. Cells 72, 41 (2002).CrossRefGoogle Scholar
  18. 18.
    E.F. Nordstrand and M. Tangstad, Metall. Mater. Trans. B 43, 814 (2012).CrossRefGoogle Scholar
  19. 19.
    K. Tang, S. Andersson, E. Nordstrand, and M. Tangstad, JOM 64, 952 (2012).CrossRefGoogle Scholar
  20. 20.
    J.J. Wu, Y.L. Li, K.X. Wei, B. Yang, and Y.N. Dai, Trans. Nonferrous Met. Soc. China 24, 1231 (2014).CrossRefGoogle Scholar
  21. 21.
    H. Lai, L. Huang, C. Lu, M. Fang, W. Ma, P. Xing, J. Li, and X. Luo, JOM 68, 2371 (2016).CrossRefGoogle Scholar
  22. 22.
    D.W. Luo, L. Ning, Y.P. Lu, G.L. Zhang, and T.J. Li, Nonferrous Met. Soc. China 21, 1178 (2011).CrossRefGoogle Scholar
  23. 23.
    L.A.V. Teixeira and K. Morita, ISIJ Int. 49, 783 (2009).CrossRefGoogle Scholar
  24. 24.
    J. Wu, Y. Zhou, W. Ma, M. Xu, and B. Yang, Metall. Mater. Trans. B 48, 22 (2017).CrossRefGoogle Scholar
  25. 25.
    T. Watanabe, H. Fukuyama, and K. Nagata, ISIJ Int. 42, 489 (2002).CrossRefGoogle Scholar
  26. 26.
    S.N. Ghosh, P.B. Rao, A.K. Paul, and K. Raina, J. Mater. Sci. 14, 1554 (1979).CrossRefGoogle Scholar
  27. 27.
    C. Remy, B. Reynard, and M. Madon, J. Am. Ceram. Soc. 80, 413 (1997).CrossRefGoogle Scholar
  28. 28.
    N.A. Yamnova, N.V. Zubkova, N.N. Eremin, A.E. Zadov, and V.M. Gazeev, Crystallogr. Rep. 56, 210 (2011).CrossRefGoogle Scholar
  29. 29.
    K. Suzuki and N. Sano, Tenth E.C. Photovoltaic Solar Energy Conference (Dordrecht: Springer, 1991), pp. 273–275.CrossRefGoogle Scholar
  30. 30.
    Y. Li, J. Wu, and W. Ma, Sep. Sci. Technol. 49, 1946 (2014).CrossRefGoogle Scholar
  31. 31.
    J. Wu, F. Wang, W. Ma, Y. Lei, and B. Yang, Metall. Mater. Trans. B 47, 1796 (2016).CrossRefGoogle Scholar
  32. 32.
    L.A.V. Teixeira, Y. Tokuda, T. Yoko, and K. Morita, ISIJ Int. 49, 777 (2009).CrossRefGoogle Scholar
  33. 33.
    E. Krystad, S. Zhang, and G. Tranell, EPD Congress 2012 (Miami, FL: TMS, 2012), pp. 471–480.CrossRefGoogle Scholar
  34. 34.
    J. Cai, J.T. Li, W.H. Chen, C. Chen, and X.T. Luo, Trans. Nonferrous Met. Soc. China 21, 1402 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.College of EnergyXiamen UniversityXiamenPeople’s Republic of China
  2. 2.Department of Physics, College of Physical Science and TechnologyXiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations