, Volume 71, Issue 5, pp 1673–1680 | Cite as

Elucidation of the Carbon-Dominated, Chemically and Structurally Heterogeneous, Geopolymeric Material Nanostructure

  • Gorakh PawarEmail author
  • Hai Huang
Computational Approaches for Energy Materials and Processes


Timely insight into fundamental material structures and access to the relevant material properties—without delving into complex experimental or sophisticated simulation-based investigations—are pivotal in accelerated material design and development processes. In the present investigation, we attempted to enable a direct physical and structural characterization of the carbon-dominated heterogeneous geopolymeric material nanostructure to critically evaluate the applicability of the general purpose DREIDING force field and assess the degree of uncertainty in the prediction of the underlying material properties. The findings of the present investigation indicate that the DREIDING force field could offer a good compromise between simple force fields and the computationally expensive quantum calculation-based force fields, where few or no experimental data are available, but with reduced accuracy. Therefore, the general-purpose DREIDING force field can potentially be used to model a class of nanoporous geopolymeric materials that exhibit significant structural and chemical heterogeneities.



This work was supported by the Laboratory Directed Research and Development (LDRD) program at the Idaho National Laboratory (INL), which is operated by the Battelle Energy Alliance for the US Department of Energy under Contract No. DE-AC07-051D14517. We also thank Dr. Paul Meakin from Temple University for insightful discussions.

Conflict of interest

There is no conflict of interest to declare.


  1. 1.
    T.L. Cook, C. Komodromos, D.F. Quinn, and S. Ragan, Carbon Materials for Advanced Technologies (New York: Pergamon, 1999).Google Scholar
  2. 2.
    P. Ungerer, J. Collell, and M. Yiannourakou, Energy Fuels 29, 1 (2014).Google Scholar
  3. 3.
    C. Bousige, C.M. Ghimbeu, C. Vix-Guterl, A.E. Pomerantz, A. Suleimenova, G. Vaughan, G. Garbarino, M. Feygenson, C. Wildgruber, F.J. Ulm, and R.J. Pellenq, Nat. Mater. 15, 5 (2016).CrossRefGoogle Scholar
  4. 4.
    G. Pawar, P. Meakin, and H. Huang, Energy Fuels 31, 11 (2017).CrossRefGoogle Scholar
  5. 5.
    A.L. Cheng and W.L. Huang, Org. Geochem. 35, 4 (2004).CrossRefGoogle Scholar
  6. 6.
    F. Behar and M. Vandenbroucke, Org. Geochem. 11, 1 (1987).CrossRefGoogle Scholar
  7. 7.
    M. Siskin, C.G. Scouten, K.D. Rose, T. Aczel, S.G. Colgrove, and R.E. Pabst, in Composition, Geochemistry and Conversion of Oil Shales. NATO ASI Series (Series C: Mathematical and Physical Sciences), ed. by C. Snape (Springer, Dordrecht, 1995), p. 455.Google Scholar
  8. 8.
    A.M. Orendt, I.S. Pimienta, S.R. Badu, M.S. Solum, R.J. Pugmire, J.C. Facelli, D.R. Locke, K.W. Chapman, P.J. Chupas, and R.E. Winans, Energy Fuels 27, 2 (2013).CrossRefGoogle Scholar
  9. 9.
    X. Liu, J.H. Zhan, D. Lai, X. Liu, Z. Zhang, and G. Xu, Energy Fuels 29, 5 (2015).Google Scholar
  10. 10.
    J. Collell, G. Galliero, F. Gouth, F. Montel, M. Pujol, P. Ungerer, and M. Yiannourakou, Microporous Mesoporous Mater. 197, 194–203 (2014).CrossRefGoogle Scholar
  11. 11.
    Ü. Lille, Oil Shale 21, 99 (2004).Google Scholar
  12. 12.
    M.Y. Gamarnik, Phys. Rev. B 54, 3 (1996).CrossRefGoogle Scholar
  13. 13.
    A.C. Van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard, J. Phys. Chem. A 105, 41 (2001).CrossRefGoogle Scholar
  14. 14.
    S.L. Mayo, B.D. Olafson, and W.A. Goddard, J. Phys. Chem. 94, 26 (1990).CrossRefGoogle Scholar
  15. 15.
    J.J. Thomas, J.J. Valenza, P.R. Craddock, K.D. Bake, and A.E. Pomerantz, Fuel 117, 801–808 (2014).CrossRefGoogle Scholar
  16. 16.
    D. Bushnev, N. Burdel’naya, M. Mokeev, and A. Gribanov, Dokl. Earth Sci., 430, 228 (2010).CrossRefGoogle Scholar
  17. 17.
    S. Kelemen, M. Afeworki, M. Gorbaty, M. Sansone, P. Kwiatek, C. Walters, H. Freund, M. Siskin, A. Bence, and D. Curry, Energy Fuels 21, 3 (2007).Google Scholar
  18. 18.
    D.N. Bolon and S.L. Mayo, Proc. Natl. Acad. Sci. 98, 25 (2001).CrossRefGoogle Scholar
  19. 19.
    J.P. Lommerse, W.S. Motherwell, H.L. Ammon, J.D. Dunitz, A. Gavezzotti, D.W. Hofmann, F.J. Leusen, W.T. Mooij, S.L. Price, and B. Schweizer, Acta Crystallogr. Sect. B Struct. Sci. 56, 4 (2000).CrossRefGoogle Scholar
  20. 20.
    J. Gasteiger and M. Marsili, Tetrahedron 36, 22 (1980).CrossRefGoogle Scholar
  21. 21.
    MAPS interface, version 4.2.
  22. 22.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
  23. 23.
    A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 1 (2009).Google Scholar
  24. 24.
    Z. Zhang and A. Jamili, SPE/CSUR Unconventional Resources Conference (Alberta: Calgary, 2015).Google Scholar
  25. 25.
    V. Petkov, Y. Ren, S. Kabekkodu, and D. Murphy, Phys. Chem. Chem. Phys. 15, 22 (2013).CrossRefGoogle Scholar
  26. 26.
    C. Wu and W. Xu, Polymer 47, 16 (2006).Google Scholar
  27. 27.
    K. Nakamura, S. Murata, and M. Nomura, Energy Fuels 7, 3 (1993).CrossRefGoogle Scholar
  28. 28.
    A.N. Naganathan and V. Muñoz, J. Am. Chem. Soc. 127, 2 (2005).Google Scholar
  29. 29.
    C.A. Hunter and J. Sanders, J. Am. Chem. Soc. 112, 14 (1990).Google Scholar
  30. 30.
    M.G. Chourasia, M. Sastry, and G.N. Sastry, Int. J. Biol. Macromol. 48, 4 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Material Science and EngineeringIdaho National LaboratoryIdaho FallsUSA

Personalised recommendations