pp 1–11 | Cite as

Numerical Modeling of Diffusion-Based Peritectic Solidification in Iron Carbon System and Experimental Validation

  • Ipsita Madhu Mita Das
  • Nishant Kumar
  • Manas PaliwalEmail author
Metallurgical Kinetics


Continuous casting of high-strength steels is challenging owing to peritectic phase transformation during solidification. This transformation is reported to be either diffusion controlled or “massive” like. The experimental evidence suggests that constant thermal gradients lead to diffusion-controlled phenomena, whereas the concentric solidification technique induces massive transformation. Diffusion-controlled peritectic solidification is more desirable during continuous casting to ensure a suitable cast quality compared with massive transformation. Accordingly, the authors demonstrate a general one-dimensional numerical modeling of the solidification process in steel by incorporating a diffusion-controlled peritectic phase transformation. The model is dynamically linked with the FactSage thermodynamic database through ChemAppV 7.1.4 library for input of accurate thermodynamic data. The modeling details are presented for a binary Fe-C system, and the results are compared with the experimental data available in the literature. The growth and dissolution of phases are accurately predicted as a function of composition and cooling rate.



  1. 1.
    C.G. Lee, S. Kim, B. Song, and S. Lee, Met. Mater. Int. 8, 435 (2002).CrossRefGoogle Scholar
  2. 2.
    O. Matsumura, Y. Sakuma, and H. Takechi, ISIJ Int. 32, 1014 (1992).CrossRefGoogle Scholar
  3. 3.
    Z. Li and D. Wu, ISIJ Int. 46, 121 (2006).CrossRefGoogle Scholar
  4. 4.
    T. Saeki, S. Ooguchi, S. Mizoguchi, T. Yamamoto, H. Misumi, and A. Tsuneoka, Tetsu-to-Hagané 68, 1773 (1982).CrossRefGoogle Scholar
  5. 5.
    S. Moon, The peritectic phase transition and continuous casting practice (Doctor of Philosophy thesis, Faculty of Engineering and Information Sciences, University of Wollongong, 2015).
  6. 6.
    Y. Ueshima, S. Mizoguchi, T. Matsumiya, and H. Kajioka, Metall. Trans. B 17, 845 (1986).CrossRefGoogle Scholar
  7. 7.
    T. Matsumiya, H. Kajioka, S. Mizoguchi, Y. Ueshima, and H. Esaka, Trans. Iron Steel Inst. Jpn. 24, 873 (1984).CrossRefGoogle Scholar
  8. 8.
    Y.J. Choi, Non-Equilibrium Solidification of δ-TRIP Steel (Pohang: Pohang University of Science and Technology, 2011).Google Scholar
  9. 9.
    H.M. Lee, J.S. Bae, J.R. Soh, S.K. Kim, and Y.D. Lee, Mater. Trans. JIM 39, 633 (1998).CrossRefGoogle Scholar
  10. 10.
    K.S. Chuang and D. Reinisch, Met. Trans. A 6, 235 (1975).CrossRefGoogle Scholar
  11. 11.
    H. Shibata, Y. Arai, M. Suzuki, and T. Emi, Metall. Mater. Trans. B 31, 981 (2000).CrossRefGoogle Scholar
  12. 12.
    H. Yasuda, T. Nagira, M. Yoshiya, A. Sugiyama, N. Nakatsuka, M. Kiire, M. Uesugi, K. Uesugi, K. Umetani, and K. Kajiwara, IOP Conf. Ser. Mater. Sci. Eng. 33, 012036 (2012).CrossRefGoogle Scholar
  13. 13.
    S. Griesser, C. Bernhard, and R. Dippenaar, Acta Mater. 81, 111 (2014).CrossRefGoogle Scholar
  14. 14.
    Y.M. Won and B.G. Thomas, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 32, 1755 (2001).CrossRefGoogle Scholar
  15. 15.
    H. Fredriksson and J. Stjerndahl, Met. Sci. 6, 575 (1982).CrossRefGoogle Scholar
  16. 16.
    L. Thuinet and H. Combeau, Comput. Mater. Sci. 45, 294 (2009).CrossRefGoogle Scholar
  17. 17.
    L. Thuinet and H. Combeau, Comput. Mater. Sci. 45, 285 (2009).CrossRefGoogle Scholar
  18. 18.
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen, Calphad 33, 295 (2009).CrossRefGoogle Scholar
  19. 19.
    M. Paliwal and I.H. Jung, J. Cryst. Growth 394, 28 (2014).CrossRefGoogle Scholar
  20. 20.
    M. Paliwal, D.H. Kang, E. Essadiqi, and I.H. Jung, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45, 3596 (2014).CrossRefGoogle Scholar
  21. 21.
    M. Paliwal and I.H. Jung, Acta Mater. 61, 4848 (2013).CrossRefGoogle Scholar
  22. 22.
    M. Paliwal, D.H. Kang, E. Essadiqi, and I.H. Jung, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45, 3308 (2014).CrossRefGoogle Scholar
  23. 23.
  24. 24.
    D.M. Stefanescu, ISIJ Int. 46, 786 (2006).CrossRefGoogle Scholar
  25. 25.
    S. Arrhenius, Zeitschrift Für Phys. Chemie 4, 226 (1889).Google Scholar
  26. 26.
    H.G. Landau, Q. Appl. Math. 8, 81 (1950).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Ipsita Madhu Mita Das
    • 1
  • Nishant Kumar
    • 1
  • Manas Paliwal
    • 1
    Email author
  1. 1.Materials Science EngineeringIndian Institute of Technology GandhinagarPalajIndia

Personalised recommendations