, Volume 71, Issue 7, pp 2291–2295 | Cite as

Characterization of the Interfacial Structure of Coarse α Precipitates in a Metastable β-Ti Alloy Ti-5Al-5Mo-5V-3Cr

  • Yufeng ZhengEmail author
  • William A. T. Clark
  • Hamish L. Fraser
Composition-Processing-Microstructure-Property Relationships of Titanium Alloys


Lattice invariant dislocations (LIDs) on the habit plane of coarse α precipitates in a metastable β titanium alloy, Ti-5Al-5Mo-5V-3Cr (Ti-5553), were characterized directly using high-resolution, high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and analyzed in terms of a topological model. Coarse α precipitates, with an areal density of ~ 0.5 laths/μm2, were formed in a sample of Ti-5553, solution heat-treated and quenched to room temperature followed by 30 min isothermal ageing at 700°C. The Burgers vector of the LIDs on the broad face of the coarse α precipitates was determined using HAADF-STEM to be \( \frac{1}{2}{<}111{>}_{\beta} \), with a spacing of approximately 11 nm. Such Burgers vectors are the same as those belonging to the LIDs on the broad face of refined α precipitates in the same alloy, indicating that both types of α microstructures share a common interfacial structure with the β matrix despite different morphologies and size scales.



The support of this research by the National Science Foundation, under grant DMR-1309270 and DMREF grant DMR-1435483, is very gratefully acknowledged. The authors also acknowledge Professor R. C. Pond for invaluable contributions.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    D. Banerjee and J.C. Williams, Acta Mater. 61, 844 (2013).CrossRefGoogle Scholar
  2. 2.
    J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J.C. Fanning, JOM 67, 1281 (2015).CrossRefGoogle Scholar
  3. 3.
    S. Nag, Y. Zheng, R.E.A. Williams, A. Devaraj, A. Boyne, Y. Wang, P.C. Collins, G.B. Viswanathan, J.S. Tiley, B.C. Muddle, R. Banerjee, and H.L. Fraser, Acta Mater. 60, 6247 (2012).CrossRefGoogle Scholar
  4. 4.
    Y. Zheng, R.E.A. Williams, J.M. Sosa, Y. Wang, R. Banerjee, and H.L. Fraser, Scr. Mater. 111, 81 (2016).CrossRefGoogle Scholar
  5. 5.
    Y. Zheng, R.E.A. Williams, J.M. Sosa, T. Alam, Y. Wang, R. Banerjee, and H.L. Fraser, Acta Mater. 103, 165 (2016).CrossRefGoogle Scholar
  6. 6.
    Y. Zheng, R.E.A. Williams, D. Wang, R. Shi, S. Nag, P. Kami, J.M. Sosa, R. Banerjee, Y. Wang, and H.L. Fraser, Acta Mater. 103, 850 (2016).CrossRefGoogle Scholar
  7. 7.
    A. Boyne, D. Wang, R.P. Shi, Y. Zheng, A. Behera, S. Nag, J.S. Tiley, H.L. Fraser, R. Banerjee, and Y. Wang, Acta Mater. 64, 188 (2014).CrossRefGoogle Scholar
  8. 8.
    Y. Ni and A.G. Khachaturyan, Nat. Mater. 8, 410 (2009).CrossRefGoogle Scholar
  9. 9.
    Y. Ni, W. Rao, and A.G. Khachaturyan, Nano Lett. 9, 3275 (2009).CrossRefGoogle Scholar
  10. 10.
    C.G. Rhodes and J.C. Williams, Metall. Trans. A 6, 2103 (1975).CrossRefGoogle Scholar
  11. 11.
    S.M.C. van Bohemen, J. Sietsma, and S. van der Zwaag, Phys. Rev. B 74, 10 (2006).Google Scholar
  12. 12.
    T. Furuhara, J. Howe, and H. Aaronson, Acta Metall. 39, 2873 (1991).CrossRefGoogle Scholar
  13. 13.
    T. Furuhara, T. Ogawa, and T. Maki, Philos. Mag. Lett. 72, 175 (1995).CrossRefGoogle Scholar
  14. 14.
    E. Menon and H. Aaronson, Acta Metall. 34, 1975 (1986).CrossRefGoogle Scholar
  15. 15.
    F. Ye, W.Z. Zhang, and D. Qiu, Acta Mater. 52, 2449 (2004).CrossRefGoogle Scholar
  16. 16.
    D. Qiu, M.-X. Zhang, P.M. Kelly, and T. Furuhara, Acta Mater. 61, 7624 (2013).CrossRefGoogle Scholar
  17. 17.
    H.L. Fraser, D.W. McComb, and R.E.A. Williams, Transmission electron microscopy for physical metallurgists.Physical Metallurgy, ed. D. Laughlin and K. Hono (Amsterdam: Elsevier, 2014), p. 1143.CrossRefGoogle Scholar
  18. 18.
    Y. Zheng, R.E.A. Williams, G.B. Viswanathan, W.A.T. Clark, and H.L. Fraser, Acta Mater. 150, 25 (2018).CrossRefGoogle Scholar
  19. 19.
    G.B. Olson and M. Cohen, Ann. Rev. Mater. Sci. 11, 1 (1981).CrossRefGoogle Scholar
  20. 20.
    R.C. Pond, S. Celotto, and J.P. Hirth, Acta Meter. 51, 5385 (2003).CrossRefGoogle Scholar
  21. 21.
    R.C. Pond and J.P. Hirth, Philos. Mag. 90, 805 (2010).CrossRefGoogle Scholar
  22. 22.
    R.C. Pond, X. Ma, Y.W. Chai, and J.P. Hirth, Topological modeling of martensitic transformations.Dislocation in Solids, ed. F.R.N. Nabarro and J.P. Hirth (Amsterdam: Elsevier, 2007), p. 225.CrossRefGoogle Scholar
  23. 23.
    S. Nag, Influence of Beta Instabilities on the Early Stages of Nucleation and Growth of Alpha in Beta Titanium Alloys (The Ohio State University, 2008, PhD thesis).Google Scholar
  24. 24.
    R. Shi and Y. Wang, Acta Mater. 61, 6006 (2013).CrossRefGoogle Scholar
  25. 25.
    E.S.K. Menon and H.I. Aaronson, Acta Metall. 34, 1963 (1986).CrossRefGoogle Scholar
  26. 26.
    W.G. Burgers, Physica 1, 561 (1934).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yufeng Zheng
    • 1
    Email author
  • William A. T. Clark
    • 1
  • Hamish L. Fraser
    • 1
  1. 1.Department of Materials Science and Engineering, Center for the Accelerated Maturation of Materials (CAMM)The Ohio State UniversityColumbusUSA

Personalised recommendations