pp 1–9 | Cite as

Enhanced Mechanical Properties of ECAPed Mg-9Al-1Si Alloy by a Two-Stage Pretreatment

  • Zengyao Zhang
  • Hongxia WangEmail author
  • Zhiwen Wang
  • Hang Li
  • Ziyan Li
  • Liuwei Zheng
  • Weili ChengEmail author
Second-Phase Particles in Magnesium Alloys: Engineering for Properties and Performance


A two-stage pretreatment (TSP), namely ultrasonic vibration treatment and solid-solution treatment, is proposed to improve the microstructure and properties of Mg-9Al-1Si alloy before equal-channel angular pressing (ECAP). The ultrasonic vibration treatment could distribute Mg2Si and Mg17Al12 phases uniformly in the alloy, while alloys subjected to solid-solution treatment exhibited a reduction in the amount of Mg17Al12 phase and improved plastic deformation capacity. In addition, the microstructure can be significantly refined, and broken Mg2Si phase and fine Mg17Al12 precipitates can reduce the average grain size during the ECAP process. Therefore, the strength and elongation of the ECAPed Mg-9Al-1Si alloy were improved simultaneously by introducing the TSP. The yield strength, ultimate tensile strength, and elongation of the ECAPed alloy with TSP were significantly enhanced to 290 MPa, 350 MPa, and 14.77%, respectively.



The authors gratefully acknowledge financial support from the Natural Science Foundation of Shanxi Province (201701D121045), National Natural Science Foundation of China (51301118, 51404166), and Shanxi Province Scientific Facilities and Instruments Shared Service Platform (201805D141005).


  1. 1.
    N.V. Ravi Kumar, J.J. Blandin, C. Desrayaud, F. Montheillet, and M. Suéry, Mater. Sci. Eng. A 359, 150 (2003).CrossRefGoogle Scholar
  2. 2.
    R.M. Wang, A. Eliezer, and E. Gutman, Mater. Sci. Eng. A 344, 279 (2003).CrossRefGoogle Scholar
  3. 3.
    J. Yang, D.R. Ni, D. Wang, B.L. Xiao, and Z.Y. Ma, Mater. Charact. 96, 142 (2014).CrossRefGoogle Scholar
  4. 4.
    A. Srinivasan, J. Swaminathan, U.T.S. Pillai, K. Guguloth, and B.C. Pai, Mater. Sci. Eng. A 485, 86 (2008).CrossRefGoogle Scholar
  5. 5.
    Z.W. Wang, H.X. Wang, J.L. Gong, M. Li, W.L. Cheng, and W. Liang, China Foundry 13, 310 (2016).CrossRefGoogle Scholar
  6. 6.
    G.Y. Yuan, Z.L. Liu, Q.D. Wang, and W.J. Ding, Mater. Lett. 56, 53 (2002).CrossRefGoogle Scholar
  7. 7.
    J. Gong, W. Liang, H. Wang, X. Zhao, and L. Bian, Rare. Met. Mater. Eng. 42, 1800 (2013).CrossRefGoogle Scholar
  8. 8.
    F. Xue, X. Min, and Y. Sun, J. Mater. Sci. 41, 4725 (2006).CrossRefGoogle Scholar
  9. 9.
    E. Mostaed, A. Fabrizi, D. Dellasega, F. Bonollo, and M. Vedani, J. Alloys Compd. 638, 267 (2015).CrossRefGoogle Scholar
  10. 10.
    H.K. Lin, J.C. Huang, and T.G. Langdon, Mater. Sci. Eng. A 402, 250 (2005).CrossRefGoogle Scholar
  11. 11.
    W.L. Cheng, L. Tian, H.X. Wang, L.P. Bian, and H. Yu, Mater. Sci. Eng. A 687, 148 (2017).CrossRefGoogle Scholar
  12. 12.
    W. Wang, H. Wang, Y. Liu, H. Nie, and W. Cheng, J. Mater. Res. 32, 615 (2017).CrossRefGoogle Scholar
  13. 13.
    M. Shahzad, A.H. Qureshi, and H. Waqas, Mater. Des. 51, 870 (2013).CrossRefGoogle Scholar
  14. 14.
    P. Palai, N. Prabhu, P.D. Hodgson, and B.P. Kashyap, J. Mater. Eng. Perform. 23, 77 (2014).CrossRefGoogle Scholar
  15. 15.
    L. Zhang, Q. Wang, W. Liao, W. Guo, B. Ye, H. Jiang, and W. Ding, J. Mater. Sci. Technol. 33, 935 (2017).CrossRefGoogle Scholar
  16. 16.
    Y.Z. Uuml, Q.D. Wang, X.Q. Zeng, Y.P. Zhu, and W.J. Ding, Mater. Sci. Eng. A 301, 255 (2001).CrossRefGoogle Scholar
  17. 17.
    X. Liu, Y. Osawa, S. Takamori, and T. Mukai, Mater. Sci. Eng. A 487, 120 (2008).CrossRefGoogle Scholar
  18. 18.
    X. Jian, T.T. Meek, and Q. Han, Scr. Mater. 54, 893 (2006).CrossRefGoogle Scholar
  19. 19.
    K.B. Nie, X.J. Wang, K. Wu, M.Y. Zheng, and X.S. Hu, Mater. Sci. Eng. A 528, 7484 (2011).CrossRefGoogle Scholar
  20. 20.
    K.B. Nie, X.J. Wang, K. Wu, X.S. Hu, M.Y. Zheng, and L. Xu, Mater. Sci. Eng. A 528, 8709 (2011).CrossRefGoogle Scholar
  21. 21.
    J.T. Zhang, Y.G. Zhao, X.U. Xiao-Feng, and X.B. Liu, Trans. Nonferrous Met. Soc. 23, 2852 (2013).CrossRefGoogle Scholar
  22. 22.
    H. Yan, Y. Rao, and R. He, J. Mater. Process. Technol. 214, 612 (2014).CrossRefGoogle Scholar
  23. 23.
    M. Ben-Haroush, G. Ben-Hamu, D. Eliezer, and L. Wagner, Corros. Sci. 50, 1766 (2008).CrossRefGoogle Scholar
  24. 24.
    L. Zheng, H. Nie, W. Zhang, W. Liang, and Y. Wang, Mater. Sci. Eng. A 722, 58 (2017).CrossRefGoogle Scholar
  25. 25.
    S.H. Park, S.H. Kim, Y.M. Kim, and B.S. You, J. Alloys Compd. 646, 932 (2015).CrossRefGoogle Scholar
  26. 26.
    L. Zheng, H. Nie, W. Liang, H. Wang, and Y. Wang, J. Magnes. Alloys 4, 115 (2016).CrossRefGoogle Scholar
  27. 27.
    H. Wang, B. Zhou, Y. Zhao, K. Zhou, W. Cheng, and W. Liang, Mater. Sci. Eng. A 589, 119 (2014).CrossRefGoogle Scholar
  28. 28.
    W. Wang, H. Wang, G. Ren, W. Cheng, and S. Zhang, Rare. Met. Mater. Eng. 46, 2847 (2017).CrossRefGoogle Scholar
  29. 29.
    W. Tang, S. Huang, S. Zhang, D. Li, and Y. Peng, J. Mater. Process. Technol. 211, 1203 (2011).CrossRefGoogle Scholar
  30. 30.
    H. Lim, M.G. Lee, J.H. Kim, B.L. Adams, and R.H. Wagoner, Int. J. Plast. 27, 1328 (2011).CrossRefGoogle Scholar
  31. 31.
    T. Al-Samman, Mater. Sci. Eng. A 560, 561 (2013).CrossRefGoogle Scholar
  32. 32.
    W.L. Cheng, Q.W. Tian, H. Yu, H. Zhang, and B.S. You, J. Magnes. Alloys 2, 299 (2014).CrossRefGoogle Scholar
  33. 33.
    W.J. Li, K.K. Deng, X. Zhang, K.B. Nie, and F.J. Xu, Mater. Sci. Eng. A 677, 367 (2016).CrossRefGoogle Scholar
  34. 34.
    K.B. Nie, K.K. Deng, X.J. Wang, T. Wang, and K. Wu, Mater. Charact. 124, 14 (2017).CrossRefGoogle Scholar
  35. 35.
    S. Khani, M.R. Aboutalebi, M.T. Salehi, H.R. Samim, and H. Palkowski, Mater. Sci. Eng. A 678, 44 (2016).CrossRefGoogle Scholar
  36. 36.
    C. Bettles and M. Gibson, JOM 57, 46 (2005).CrossRefGoogle Scholar
  37. 37.
    F.A. Mirza, D.L. Chen, D.J. Li, and X.Q. Zeng, Mater. Des. 46, 411 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Shanxi Key Laboratory of Advanced Magnesium based Materials, College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations