Advertisement

JOM

, Volume 71, Issue 7, pp 2253–2261 | Cite as

Dynamic Recrystallization-Related Interface Phase Boundary Migration of TC17/TC4 Bond with Initial Equiaxed Microstructure

  • Lixing Sun
  • Miaoquan LiEmail author
  • Hong Li
Composition-Processing-Microstructure-Property Relationships of Titanium Alloys
  • 67 Downloads

Abstract

The phase, grain, orientation and local misorientation in the bonding interface of a TC17/TC4 bond at different bonding times were carefully investigated via electron backscatter diffraction technique. Dynamic recrystallization (DRX) occurred in the primary α (αp)-enriched region of the TC4 side, in which large αp grains of the TC4 side transformed into small recrystallized α grains with random orientation. With the increasing of bonding time, DRX in the αp-enriched region of the TC4 side was more evident and the recrystallized α grains grew. The stored energy difference between the recrystallized α grains of the TC4 side and the β grains/subgrains of the TC17 side provided the driving force for the migration of the interface phase boundary (IPB). In addition, the migration of IPB was promoted as the bonding time increased, which was due to the synergistic effect of the increase in the stored energy difference and the growth of the recrystallized α grains of the TC4 side.

Notes

Acknowledgement

This project is supported by National Natural Science Foundation of China (Grant Nos. 51475375 and 51505386).

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

References

  1. 1.
    H. Li, C. Yang, L.X. Sun, and M.Q. Li, J. Alloy. Compd. 720, 131 (2017).CrossRefGoogle Scholar
  2. 2.
    M.S. Kenevisi, S.M. Khoie, and M. Alaei, Mech. Mater. 64, 69 (2013).CrossRefGoogle Scholar
  3. 3.
    K. Aydin, Y. Kaya, and N. Kahraman, Mater. Des. 37, 356 (2012).CrossRefGoogle Scholar
  4. 4.
    S. Noh, R. Kasada, and A. Kimura, Acta Mater. 59, 3196 (2011).CrossRefGoogle Scholar
  5. 5.
    D. Banerjee and J.C. Williams, Acta Mater. 61, 844 (2013).CrossRefGoogle Scholar
  6. 6.
    S.J. Tuppen, M.R. Bache, and W.E. Voice, Int. J. Fatigue 27, 651 (2005).CrossRefGoogle Scholar
  7. 7.
    H. Li, H.B. Liu, and M.Q. Li, Mater. Lett. 108, 212 (2013).CrossRefGoogle Scholar
  8. 8.
    L.X. Sun, M.Q. Li, and H. Li, J. Mater. Sci. 53, 5380 (2018).CrossRefGoogle Scholar
  9. 9.
    C. Zhang, H. Li, and M.Q. Li, Sci. Technol. Weld. Join. 20, 115 (2015).CrossRefGoogle Scholar
  10. 10.
    D. Herrmann and F. Appel, Metall. Mater. Trans. A 40A, 1881 (2009).CrossRefGoogle Scholar
  11. 11.
    B. Tang, X.S. Qi, H.C. Kou, J.S. Li, and S. Milenkovic, Adv. Eng. Mater. 18, 657 (2016).CrossRefGoogle Scholar
  12. 12.
    Y. Huang, N. Ridley, F.J. Humphreys, and J.Z. Cui, Mater. Sci. Eng. A 266, 295 (1999).CrossRefGoogle Scholar
  13. 13.
    F.J. Gil and J.A. Planell, Mater. Sci. Eng. A 283, 17 (2000).CrossRefGoogle Scholar
  14. 14.
    D.G. Gram, X.Y. Fang, H.S. Zurob, Y.J.M. Bréchet, and C.R. Hutchinson, Acta Mater. 60, 6390 (2012).CrossRefGoogle Scholar
  15. 15.
    R. Kappor, G. Bharat Reddy, and A. Sarkar, Mater. Sci. Eng. A 718, 104 (2018).CrossRefGoogle Scholar
  16. 16.
    K. Huang and R.E. Logé, Mater. Des. 111, 548 (2016).CrossRefGoogle Scholar
  17. 17.
    J.L. Sun, P.W. Trimby, F.K. Yan, X.Z. Liao, N.R. Tao, and J.T. Wang, Acta Mater. 79, 47 (2014).CrossRefGoogle Scholar
  18. 18.
    S.L. Semiatin and D.U. Furrer, Modeling of microstructure evolution during the thermomechanical processing of titanium alloys.Fundamentals of Modeling for Metals Processing, ed. S.L. Semiatin and D.U. Furrer (Ohio, NY: ASM International, 2009), p. 536.Google Scholar
  19. 19.
    T. Saki, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Prog. Mater Sci. 60, 130 (2014).CrossRefGoogle Scholar
  20. 20.
    L. Li, M.Q. Li, and J. Luo, Acta Mater. 94, 36 (2015).CrossRefGoogle Scholar
  21. 21.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Oxford, NY: Elsevier, 2004), pp. 178–185.Google Scholar
  22. 22.
    O. Engler and V. Randle, Introduction to Texture Analysis, 2nd ed. (Florida, NY: CRC Press, 2010), pp. 148–153.Google Scholar
  23. 23.
    C. Zhang, H. Li, and M.Q. Li, Appl. Surf. Sci. 371, 407 (2016).CrossRefGoogle Scholar
  24. 24.
    N. Orhan, M. Aksoy, and M. Eroglu, Mater. Sci. Eng. A 271, 458 (1999).CrossRefGoogle Scholar
  25. 25.
    R.F. Ma, M.Q. Li, H. Li, and W.X. Yu, Sci. China Technol. Sci. 55, 2420 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations