Advertisement

JOM

, Volume 71, Issue 12, pp 4349–4361 | Cite as

The Current Status and Development of Semi-solid Powder Forming (SPF)

  • Xia LuoEmail author
  • Min Wu
  • Chao Fang
  • Bensheng Huang
Aluminum: Shape Casting and Forming

Abstract

Semi-solid powder forming is a promising near-net-shaped forming technology, which has the advantages of powder metallurgy and semi-solid forming, such as fine grains, low forming pressure and short process flow. It was used to prepare wide solidification range alloys and its composites. Until now, there have been many studies on the parameters, microstructure and mechanical properties of this technology, but few on the forming principles. Because deformation, solidification and densification occur simultaneously, the forming mechanism is very complex. The liquid fraction is the key factor influencing the microstructure and mechanical properties. Semi-solid compression of porous materials was carried out to study the deformation mechanism of semi-solid powders. The combination mechanism and densification process for semi-solid powder rolling has been analyzed, and the compaction behavior of powders in the semi-solid state has been studied. Shima porous yield criterion and Doraivelu plastic yield criterion were applied in the simulation of semi-solid powder rolling. Based on the Fourier heat conduction equation and the related parameters of semi-solid powder, the rolling force and relative density were simulated by using the Marc finite element software platform. The simulation results are in agreement with the experimental results. Although some achievements have been made in the theoretical research and numerical simulation, the yield criteria and mathematical models suitable for semi-solid powder forming need to be further established. In addition, further optimization of this technology and its application in commercial applications should be the research direction.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of the Young Scholars Development Fund of SWPU (No. 201599010066), National Natural Science Foundation of China (No. 51704255), and Open Fund of National Engineering Research Center of Near-net-shape Forming Technology for Metallic Materials, South China University of Technology (No. 2015002).

References

  1. 1.
    D.B. Spencer, R. Mehrabian, and M.C. Flemings, Metall. Trans. 3, 1925 (1972).CrossRefGoogle Scholar
  2. 2.
    M. Kiuchi and R. Kopp, CIRP Ann. Manuf. Technol. 51, 653 (2002).CrossRefGoogle Scholar
  3. 3.
    D. Walukas, S. Labeau, N. Prewitt, and R. Decker, Mater. Technol. 109, 1 (2000).Google Scholar
  4. 4.
    R.M.K. Yong and T.W. Clyne, J. Mater. Sci. 21, 1057 (1986).CrossRefGoogle Scholar
  5. 5.
    Y.F. Wu, Development of Novel Semisolid Powder Processing for Micro-Manufacturing, Graduate Theses and Dissertations, Paper 10568 (2009).Google Scholar
  6. 6.
    T.J. Chen, H. Qin, and X.Z. Zhang, J. Mater. Sci. 53, 2576 (2018).CrossRefGoogle Scholar
  7. 7.
    T. Marooka, Met. Powder Rep. 52, 39 (1997).CrossRefGoogle Scholar
  8. 8.
    S.J. Luo and L.J. Zu, Trans. Nonferrous Met. Soc. China 10, 304 (2000).MathSciNetGoogle Scholar
  9. 9.
    L.J. Zu, S.J. Luo, and H.Y. Zhang, J. Harbin Inst. Technol. 32, 69 (2000) (in Chinese).Google Scholar
  10. 10.
    L.J. Zu and S.J. Luo, Trans. Nonferrous Met. Soc. China 10, 179 (2000) (in Chinese).Google Scholar
  11. 11.
    L.J. Zu and S.J. Luo, J. Mater. Proc. Technol. 114, 189 (2001).CrossRefGoogle Scholar
  12. 12.
    S.J. Luo, Y.S. Cheng, and P.X. Wang, Trans. Nonferrous Met. Soc. China 16, 772 (2006).CrossRefGoogle Scholar
  13. 13.
    R.W. Hamilton, Z. Zhu, R.J. Dashwood, and P.D. Lee, Compos. A 34, 333 (2003).CrossRefGoogle Scholar
  14. 14.
    K. Yasue, G.L. Yu, C.E. Wen, and Y. Yamada, J. Mater. Sci. 35, 5927 (2000).CrossRefGoogle Scholar
  15. 15.
    C.E. Wen, K. Yasue, and Y. Yamada, J. Mater. Sci. 36, 1741 (2001).CrossRefGoogle Scholar
  16. 16.
    C.M. Chen, C.C. Yang, and C.G. Chao, J. Mater. Proc. Technol. 167, 103 (2005).CrossRefGoogle Scholar
  17. 17.
    Y. F. Wu, G.Y. Kim, I.E. Anderson, and T. Lograsso, Fabrication of graded structure in SiC-reinforced metal matrix by semisolid powder processing, Proceedings of the ASME 2009 International Manufacturing Science and Engineering Conference. USA, West Lafayette, Indiana, vol. 10 (2009), p. 4.Google Scholar
  18. 18.
    Y.F. Wu, G.Y. Kim, I.E. Anderson, and T. Lograsso, J. Manuf. Sci. Eng. 132, 0110031 (2010).Google Scholar
  19. 19.
    Y.F. Wu, G.Y. Kim, I.E. Anderson, and T. Lograsso, Acta Mater. 58, 4398 (2010).CrossRefGoogle Scholar
  20. 20.
    Y.F. Wu and G.Y. Kim, J. Mater. Proc. Technol. 211, 1341 (2011).CrossRefGoogle Scholar
  21. 21.
    Y.F. Wu and G.Y. Kim, Powder Technol. 214, 252 (2011).CrossRefGoogle Scholar
  22. 22.
    Y.F. Wu, Fabrication of Metal Matrix Composite by Semi-Solid Powder Processing (Ames: Iowa State University, 2011).CrossRefGoogle Scholar
  23. 23.
    Y.F. Wu, G.Y. Kim, and A.M. Russell, Mater. Sci. Eng. A 532, 558 (2012).CrossRefGoogle Scholar
  24. 24.
    Y.F. Wu, G.Y. Kim, and A.M. Russell, Mater. Sci. Eng. A 538, 164 (2012).CrossRefGoogle Scholar
  25. 25.
    M. Bastwros, G.Y. Kim, C. Zhu, K. Zhang, S.R. Wang, X.D. Tang, and X.W. Wang, Compos. B 60, 111 (2014).CrossRefGoogle Scholar
  26. 26.
    Y.Z. Liu, X. Luo, and Z.L. Li, J. Mater. Proc. Technol. 214, 165 (2014).CrossRefGoogle Scholar
  27. 27.
    X. Luo, Y.Z. Liu, C.X. Gu, and Z.L. Li, Powder Technol. 216, 161 (2014).CrossRefGoogle Scholar
  28. 28.
    X. Luo, Y.Z. Liu, Z.Q. Mo, and C.X. Gu, Metall. Mater. Trans. A 46A, 2185 (2015).CrossRefGoogle Scholar
  29. 29.
    X. Luo, Y.Z. Liu, and H.F. Jia, Oxid. Met. 83, 55 (2015).CrossRefGoogle Scholar
  30. 30.
    X. Luo, Study on the Process and Principle of Semi-solid Powder Rolling for Preparation of 7050 Aluminum Strip, South China University of Technology, Doctoral thesis (2015) (in Chinese).Google Scholar
  31. 31.
    X. Luo and Y.Z. Liu, JOM 68, 3078 (2016).CrossRefGoogle Scholar
  32. 32.
    Z.Q. Mo, Y.Z. Liu, H.F. Jia, and M. Wu, Trans. Nonferrous Met. Soc. China 25, 3181 (2015).CrossRefGoogle Scholar
  33. 33.
    W. Min, Y.Z. Liu, T. Wang, and K.B. Yu, Mater. Sci. Eng. A 674, 144 (2016).Google Scholar
  34. 34.
    W. Min, Y.Z. Liu, Z. Zeng, and W.Y. Luo, JOM 69, 763 (2017).CrossRefGoogle Scholar
  35. 35.
    M. Wu, Process Principles and Numerical Simulation on Semi-Solid Powder Forming and Porous Materials Deformation of 2024 Aluminum Alloy. South China University of Technology, Doctoral thesis (2018) (in Chinese).Google Scholar
  36. 36.
    Y.F. Zhang, Microstructure and Properties of Thixomolding Magnesium Alloy and Simulation of Forming Process. Jilin University, Doctoral thesis (2008) (in Chinese).Google Scholar
  37. 37.
    J.L. Tang and D.B. Zeng, Foundry Equip. Technol. China 6, 3 (2000) (in Chinese).Google Scholar
  38. 38.
    D. Ghosh, K. Kang, C. Bach, et al., Properties and microstructure of thixomolded and heat treated AZ61A magnesium alloy.Advanced in Production and Fabrication of Light Metals and Metal Matrix Composites, ed. M.M. Avedesian, L.J. Larouehe, and J. Masounave (Montreal: The Metallurgical Society of the CIM, 1992), p. 399.Google Scholar
  39. 39.
    B. Mansoor, S. Mukherjee, and A. Ghosh, Mater. Sci. Eng. A 512, 10 (2009).CrossRefGoogle Scholar
  40. 40.
    R.D. Carnahan, R. Hathaway, and R. Kilbert, Thixomolded AZ91D magnesium: mechanical and microstructural property dependency on process parameter variations. Proceedings of the International Symposium on Light metals Processing and Applications, Quebec City, PQ (1993), p. 325.Google Scholar
  41. 41.
    T. Tsukeda, K. Takeya, K. Saito, et al., J. Jpn. Inst. Light Met. 49, 287 (1999).CrossRefGoogle Scholar
  42. 42.
    F. Czerwinski, P.J. Pinet, and J. Overbeeke, The Influence of Primary Solid Content on the Tensile Properties of a Thixomolded AZ91D Magnesium Alloy, Magnesium Technology 2001 of TMS (New Orleans, LA: The Minerals, Metals & Materials Society, 2001), p. 99.Google Scholar
  43. 43.
    F. Czerwinski, A. Zielinska, P.J. Pinet, and J. Overbeeke, Acta Mater. 49, 1225 (2001).CrossRefGoogle Scholar
  44. 44.
    F. Czerwinski, Acta Mater. 50, 3265 (2002).Google Scholar
  45. 45.
    F. Czerwinski, Scr. Mater. 48, 327 (2003).CrossRefGoogle Scholar
  46. 46.
    F. Czerwinski, Acta Mater. 52, 5057 (2004).CrossRefGoogle Scholar
  47. 47.
    F. Czerwinski, Acta Mater. 53, 1973 (2005).CrossRefGoogle Scholar
  48. 48.
    F. Czerwinski, Metall. Mater. Trans. B 1, 3320 (2018).Google Scholar
  49. 49.
    M. Scharrer, A. Lohmüller, R.M. Hilbinger, et al., Advances in Magnesium Injection Molding (Thixomolding®). Proceedings of the 7th International Conference Magnesium Alloys and Their Applications, Dresden (2006).Google Scholar
  50. 50.
    H. Frank, N. Hort, H. Dieringa, and K.-U. Kainer, Solid State Phenom. 141–143, 43 (2008).Google Scholar
  51. 51.
    W. Liang, Y.B. Liu, X.P. Cui, et al., Automot. Technol. Mater. 15, 15 (2004) (in Chinese).Google Scholar
  52. 52.
    Y.F. Zhang, Y.B. Liu, Z.Y. Cao, L. Zhang, and Q.Q. Zhang, Trans. Nonferr. Met. Soc. China 18, 703 (2008) (in Chinese).Google Scholar
  53. 53.
    Y.F. Zhang, Y.B. Liu, Q.Q. Zhang, Z.Y. Cao, X.P. Cui, and Y. Wang, Mater. Sci. Eng. A 444, 251 (2007).CrossRefGoogle Scholar
  54. 54.
    X.P. Cui, H.Y. Xu, H.F. Liu, T. Zhang, and Y.B. Liu, Adv. Mater. Res. 503–504, 90 (2012).CrossRefGoogle Scholar
  55. 55.
    H.A. Patel, D.L. Chen, S.D. Bhole, and K. Sadayappan, J. Alloys Compd. 496, 140 (2010).CrossRefGoogle Scholar
  56. 56.
    L.J. Yang, Y.H. Wei, and L.F. Hou, J. Mater. Sci. 45, 3626 (2010).CrossRefGoogle Scholar
  57. 57.
    T.D. Berman, Microstructure Evolution and Tensile Deformation in Mg Alloy AZ61 through Thixomolding and Thermomechanical Processing. University of Michigan, Doctoral thesis (2014).Google Scholar
  58. 58.
    L.P. Lei, Y.H. Zhao, and P. Zeng, Supercond. Sci. Technol. 18, 818 (2005) (in Chinese).CrossRefGoogle Scholar
  59. 59.
    M.J. Liu, W. Xia, and Z.Y. Zhou, Mach. Design Manuf. 532–533, 817 (2006) (in Chinese).Google Scholar
  60. 60.
    Z.X. Zheng Experimental and Numerical modeling for powder rolling. International Conference on Physical and Numerical Simulation of Materials Processing (2010), p. 115.Google Scholar
  61. 61.
    C. Qiu, Z.X. Zheng, W. Xia, and Z.Y. Zhou, Adv. Mater. Res. 211–212, 1182 (2011).CrossRefGoogle Scholar
  62. 62.
    M.J. Liu and G.C. Liu, Adv. Mater. Res. 569, 111 (2012).CrossRefGoogle Scholar
  63. 63.
    H.J. Chang, H.N. Han, and S.H. Joo, Int. J. Mach. Tools Manuf. 47, 1573 (2007).CrossRefGoogle Scholar
  64. 64.
    A. Michrafy, H. Diarra, J.A. Dodds, and M. Michrafy, Powder Technol. 206, 154 (2011).CrossRefGoogle Scholar
  65. 65.
    A. Michrafy, H. Diarra, J.A. Dodds, M. Michrafy, and L. Penazzi, Powder Technol. 208, 417 (2011).CrossRefGoogle Scholar
  66. 66.
    H.B. Li, Finite Element Simulation and Experimental Study on Rolling Process of Powder Metallurgy Molybdenum Plate (Taiyuan: Taiyuan University of Technology, 2011) (in Chinese).Google Scholar
  67. 67.
    A.R. Muliadi, J.D. Litster, and C.R. Wassgren, Powder Technol. 221, 90 (2012).CrossRefGoogle Scholar
  68. 68.
    A.R. Muliadi, J.D. Litster, and C.R. Wassgren, Powder Technol. 237, 386 (2013).CrossRefGoogle Scholar
  69. 69.
    V. Esnault, A. Michrafy, D. Heitzmann, M. Michrafy, and D. Oulahna, Powder Technol. 270, 484 (2015).CrossRefGoogle Scholar
  70. 70.
    H.V. Atkinson, Cheminform 36, 341 (2005).MathSciNetCrossRefGoogle Scholar
  71. 71.
    J. Chowdhury, S. Ganguly, and S. Chakraborty, J. Phys D 38, 2869 (2005).CrossRefGoogle Scholar
  72. 72.
    V. Favier and H. Atkinson, Trans. Nonferrous Met. Soc. China 20, 1691 (2010).CrossRefGoogle Scholar
  73. 73.
    V. Favier and H.V. Atkinson, Acta Mater. 59, 1271 (2011).CrossRefGoogle Scholar
  74. 74.
    A. Neag, V. Favier, R. Bigot, and H.V. Atkinson, J. Mater. Proc. Technol. 229, 338 (2016).CrossRefGoogle Scholar
  75. 75.
    V. Favier, P. Cézard, and R. Bigot, Mater. Sci. Eng. A 517, 8 (2009).CrossRefGoogle Scholar
  76. 76.
    R. Koeune and J.P. Ponthot, Int. J. Plastic. 58, 120 (2014).CrossRefGoogle Scholar
  77. 77.
    R. Koeune and J.P. Ponthot, J. Comput. Appl. Math. 234, 2287 (2008).CrossRefGoogle Scholar
  78. 78.
    C.G. Kang and J.H. Yoon, J. Mater. Proc. Technol. 66, 76 (1997).CrossRefGoogle Scholar
  79. 79.
    C.G. Kang and H.K. Jung, Int. J. Mech. Sci. 41, 1423 (1999).CrossRefGoogle Scholar
  80. 80.
    J.H. Hwang, D.C. Ko, and G.S. Min, Int. J. Mach. Tools Manuf. 40, 1311 (2000).CrossRefGoogle Scholar
  81. 81.
    D.C. Ko, G.S. Min, B.M. Kim, and J.C. Choi, J. Mater. Proc. Technol. 100, 95 (2000).CrossRefGoogle Scholar
  82. 82.
    C.G. Kang, P.K. Seo, and M.D. Lim, Int. J. Mech. Sci. 45, 1949 (2003).CrossRefGoogle Scholar
  83. 83.
    S. Shima and M. Oyane, Int. J. Mech. Sci. 18, 285 (1976).CrossRefGoogle Scholar
  84. 84.
    K. Raju, S.N. Ojha, and A.P. Harsha, J. Mater. Sci. 43, 2509 (2008).CrossRefGoogle Scholar
  85. 85.
    Y.Z. Du, B.L. Jiang, and Y.F. Ge, Vacuum 148, 27 (2018).CrossRefGoogle Scholar
  86. 86.
    S. Karagadde, P.D. Lee, B. Cai, J.L. Fife, M.A. Azeem, K.M. Kareh, C. Puncreobutr, D. Tsivoulas, T. Connolley, and R.C. Atwood, Nat. Commun. 6, 8300 (2015).  https://doi.org/10.1038/ncomms9300.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouthwest Petroleum UniversityChengduPeople’s Republic of China
  2. 2.School of Automobile and Transportation EngineeringGuangdong Polytechnic Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations