Advertisement

JOM

, Volume 71, Issue 7, pp 2187–2193 | Cite as

Effect of Double Aging on Precipitation Kinetics, Microstructure and Tensile Properties of as-ECAPed Mg-8Sn-6Zn-2Al Alloy

  • Wei-li ChengEmail author
  • Chen Guo
  • Yang Bai
  • Xiao-feng Niu
  • Hong-xia Wang
  • Li-fei Wang
Second-Phase Particles in Magnesium Alloys: Engineering for Properties and Performance
  • 72 Downloads

Abstract

An icosahedral quasicrystal phase (I-phase)-containing Mg-8Sn-6Zn-2(wt.%)Al (TZA862) alloy was subjected to ECAP and subsequent double aging. Thereafter, the age-hardening microstructure and tensile properties of the as-ECAPed TZA862 alloy were investigated. The results indicated that the grain size, fraction and orientation of the precipitates as well as the texture were affected by the double-aging treatment, which contributed to the enhanced hardness and tensile strength. The hardening of the aged alloy was mainly ascribed to the nucleation of the precipitates on grain boundaries and the strengthening was mainly related to the Orowan mechanism.

Notes

Acknowledgements

This study was jointly supported by the National Natural Science Foundation of China (Grant Nos. 51404166, 51704209, 51701060), a Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2014-023), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2014017), Shanxi Province Science Foundation for Youths (Grant No. 2016021063).

Supplementary material

11837_2019_3407_MOESM1_ESM.pdf (223 kb)
Supplementary material 1 (PDF 223 kb)

References

  1. 1.
    W.L. Cheng, L. Tian, H.X. Wang, L.P. Bian, and H. Yu, Mater. Sci. Eng. A 687, 148 (2017).CrossRefGoogle Scholar
  2. 2.
    F.R. Elsayed, T.T. Sasaki, T. Ohkubo, H. Takahashi, S.W. Xu, S. Kamado, and K. Hono, Mater. Sci. Eng. A 588, 318 (2013).CrossRefGoogle Scholar
  3. 3.
    S.H. Park, S.H. Kim, H.S. Kim, J. Yoon, and B.S. You, J. Alloys Compd. 667, 170 (2016).CrossRefGoogle Scholar
  4. 4.
    D.H. Kang, S.S. Park, and N.J. Kim, Mater. Sci. Eng. A 413–414, 555 (2005).CrossRefGoogle Scholar
  5. 5.
    X.F. Huang, Y.B. Du, W.D. Li, Y.T. Chai, and W.G. Huang, J. Alloys Compd. 696, 850 (2017).CrossRefGoogle Scholar
  6. 6.
    X.F. Huang and W.Z. Zhang, Mater. Sci. Eng. A 552, 211 (2012).CrossRefGoogle Scholar
  7. 7.
    Y.A. Chen, L. Jin, Y. Song, H. Liu, and R.Y. Ye, Mater. Sci. Eng. A 612, 96 (2014).CrossRefGoogle Scholar
  8. 8.
    Y. Jiang, Y.A. Chen, and J.J. Gao, Mater. Des. 105, 34 (2016).CrossRefGoogle Scholar
  9. 9.
    Y.K. Kim, S.W. Sohn, D.H. Kim, W.T. Kim, and D.H. Kim, J. Alloys Compd. 549, 46 (2013).CrossRefGoogle Scholar
  10. 10.
    Y. Tian, H. Huang, G.Y. Yuan, and W.J. Ding, J. Alloys Compd. 626, 42 (2015).CrossRefGoogle Scholar
  11. 11.
    T.T. Sasaki, J.D. Ju, K. Honoa, and K.S. Shin, Scr. Mater. 61, 80 (2009).CrossRefGoogle Scholar
  12. 12.
    W.L. Cheng, W.W. Wang, H.X. Wang, Y.M. Liu, and S.H. Park, Mater. Sci. Eng. A 633, 63 (2015).CrossRefGoogle Scholar
  13. 13.
    L.B. Ren, G.F. Quan, M.Y. Zhou, Y.Y. Guo, Z.Z. Jiang, and Q. Tang, Mater. Sci. Eng. A 690, 195 (2017).CrossRefGoogle Scholar
  14. 14.
    B. Amir Esgandari, H. Mehrjoo, B. Nami, and S.M. Miresmaeili, Mater. Sci. Eng. A 528, 5018 (2011).CrossRefGoogle Scholar
  15. 15.
    A.T. Adorno, R.A.G. Silva, and T.B. Neves, Mater. Sci. Eng. A 441, 259 (2006).CrossRefGoogle Scholar
  16. 16.
    J.C. Tan and M.J. Tan, Mater. Sci. Eng. A 339, 124 (2003).CrossRefGoogle Scholar
  17. 17.
    Q.M. Peng, H.W. Dong, Y.M. Wu, and L.M. Wang, J. Alloys Compd. 456, 395 (2008).CrossRefGoogle Scholar
  18. 18.
    Z. Leng, J.H. Zhang, T.L. Zhu, R.Z. Wu, M.L. Zhang, S.J. Liu, J.F. Sun, and L. Zhang, Mater. Des. 52, 713 (2013).CrossRefGoogle Scholar
  19. 19.
    D.K. Xu and E.H. Han, Prog. Nat. Sci. Mater. 22–5, 364 (2012).CrossRefGoogle Scholar
  20. 20.
    J.G. Jung, S.H. Park, and B.S. You, J. Alloys Compd. 627, 324 (2015).CrossRefGoogle Scholar
  21. 21.
    J.F. Nie, Scr. Mater. 48, 1009 (2003).CrossRefGoogle Scholar
  22. 22.
    D.L. Yu, D.F. Zhang, J. Sun, Y.X. Luo, J.Y. Xu, H.J. Zhang, and F.S. Pan, J. Alloys Compd. 690, 553 (2017).CrossRefGoogle Scholar
  23. 23.
    W.L. Cheng, L. Tian, S.C. Ma, Y. Bai, and H.X. Wang, Materials 10, 708 (2017).CrossRefGoogle Scholar
  24. 24.
    M.A. Azeem, A. Tewari, S. Mishra, S. Gollapudi, and U. Ramamurty, Acta Mater. 58, 1495 (2010).CrossRefGoogle Scholar
  25. 25.
    L. Tian and L. Li, Int. J. Curr. Eng. Technol. 8, 236 (2018).CrossRefGoogle Scholar
  26. 26.
    L. Tian, Int. J. Metall. Met. Phys. 2, 13 (2017).Google Scholar
  27. 27.
    W.N. Tang, S.S. Park, and B.S. You, Mater. Des. 32, 3537 (2011).CrossRefGoogle Scholar
  28. 28.
    W.L. Cheng, Y. Bai, L.F. Wang, H.X. Wang, L.P. Bian, and H. Yu, Materials 10, 822 (2017).CrossRefGoogle Scholar
  29. 29.
    W.J. Li, K.K. Deng, X. Zhang, K.B. Nie, and F.J. Xu, Mater. Sci. Eng. A 677, 367 (2016).CrossRefGoogle Scholar
  30. 30.
    J.W. Kang, X.F. Sun, K.K. Deng, F.J. Xu, X. Zhang, and Y. Bai, Mater. Sci. Eng. A 697, 211 (2017).CrossRefGoogle Scholar
  31. 31.
    K.K. Ma, H.M. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Acta Mater. 62, 141 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Wei-li Cheng
    • 1
    • 2
    Email author
  • Chen Guo
    • 2
  • Yang Bai
    • 2
  • Xiao-feng Niu
    • 1
    • 2
  • Hong-xia Wang
    • 1
    • 2
  • Li-fei Wang
    • 1
    • 3
  1. 1.Shanxi Key Laboratory of Advanced Magnesium-Based MaterialsTaiyuan University of TechnologyTaiyuanChina
  2. 2.School of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  3. 3.School of Materials Science and EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations