Advertisement

JOM

pp 1–5 | Cite as

Enhanced Superconductivity in FeTe0.8S0.2 via Sn Doping

  • Cheng Cheng
  • Zhenjie FengEmail author
  • Tao Li
  • Qiang Hou
  • Difei Wang
  • Hongxia Wang
  • Yifan Zhang
  • Qing Li
  • Shixun Cao
  • Jincang Zhang
Characterization of Advanced Sintering Materials
  • 72 Downloads

Abstract

Polycrystalline samples of Sn/FeTe0.8S0.2 with weight ratio x (Sn: FeTe0.8S0.2) = 0%, 3%, 5%, and 7% were successfully synthesized. Morphological characterizations of the samples indicate that introducing Sn is beneficial for grain growth, thus contributing to enhancement of superconductivity. In particular, the x = 3% sample exhibits a sharp superconducting transition and \( T_{\text{c}}^{\text{zero}} \) is increased by about 3 K based on RT curves. The low-melting-point material, Sn, is proposed to have two roles. One role is acting as the adhesive to combine the adjacent particles at the melting temperature of Sn, which is of benefit for improving the \( T_{\text{c}}^{\text{zero}} \) of the superconductivity. The other role is acting as the dopant in the tetragonal phase, which is of benefit for improving the \( T_{\text{c}}^{\text{onset}} \) of the superconductivity. This proposal may provide a new strategy for improving the superconductivity in other superconductors.

Notes

Acknowledgements

Financial support for this work from the Ministry of Science and Technology of the People’s Republic of China (2016YFB0700504) is gratefully acknowledged. We acknowledge the following funding: National Natural Science Foundation of China (11774217, 10904088), Shanghai Pujiang Program (13PJD015), Science and Technology Commission of Shanghai Municipality (13ZR1415200).

References

  1. 1.
    J. Paglione and R.L. Greene, Nat. Phys. 6, 645 (2010).CrossRefGoogle Scholar
  2. 2.
    T. Watanabe, H. Yanagi, Y. Kamihara, T. Kamiya, M. Hirano, and H. Hosono, J. Solid State Chem. 181, 2117 (2008).CrossRefGoogle Scholar
  3. 3.
    Z.-A. Ren, G.-C. Che, X.-L. Dong, J. Yang, W. Lu, W. Yi, X.-L. Shen, Z.-C. Li, L.-L. Sun, F. Zhou, and Z.-X. Zhao, EPL 83, 17002 (2008).CrossRefGoogle Scholar
  4. 4.
    K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78, 062001 (2009).CrossRefGoogle Scholar
  5. 5.
    Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).CrossRefGoogle Scholar
  6. 6.
    Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, J. Am. Chem. Soc. 128, 10012 (2006).CrossRefGoogle Scholar
  7. 7.
    Z.-A. Ren, W. Lu, J. Yang, W. Yi, X.-L. Shen, Z.-C. Li, G.-C. Che, X.-L. Dong, L.-L. Sun, F. Zhou, and Z.-X. Zhao, Chin. Phys. Lett 25, 2215 (2008).CrossRefGoogle Scholar
  8. 8.
    F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P.M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, and M.-K. Wu, PNAS 105, 14262 (2008).CrossRefGoogle Scholar
  9. 9.
    P. Zajdel, P.-Y. Hsieh, E.E. Rodriguez, N.P. Butch, J.D. Magill, J. Paglione, P. Zavalij, M.R. Suchomel, and M.A. Green, J. Am. Chem. Soc. 132, 13000 (2010).CrossRefGoogle Scholar
  10. 10.
    K.-W. Yeh, T.-W. Huang, Y. Huang, T.-K. Chen, F.-C. Hsu, P.M. Wu, Y.-C. Lee, Y.-Y. Chu, C.-L. Chen, J.-Y. Luo, D.-C. Yan, and M.-K. Wu, EPL 84, 37002 (2008).CrossRefGoogle Scholar
  11. 11.
    Y. Cui, G. Zhang, H. Li, H. Lin, X. Zhu, H.-H. Wen, G. Wang, J. Sun, M. Ma, Y. Li, D. Gong, T. Xie, Y. Gu, S. Li, H. Luo, P. Yu, and W. Yu, Sci. Bull. 63, 11 (2018).CrossRefGoogle Scholar
  12. 12.
    S. Li, C. de la Cruz, Q. Huang, Y. Chen, J.W. Lynn, J. Hu, Y.-L. Huang, F.-C. Hsu, K.-W. Yeh, M.-K. Wu, and P. Dai, Phys. Rev. B 79, 054503 (2009).CrossRefGoogle Scholar
  13. 13.
    T. Taen, Y. Tsuchiya, Y. Nakajima, and T. Tamegai, Phys. Rev. B 80, 092502 (2009).CrossRefGoogle Scholar
  14. 14.
    Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, Appl. Phys. Lett. 94, 012503 (2009).CrossRefGoogle Scholar
  15. 15.
    N. Katayama, S. Ji, D. Louca, S. Lee, M. Fujita, T.J. Sato, J. Wen, Z. Xu, G. Gu, G. Xu, Z. Lin, M. Enoki, S. Chang, K. Yamada, and J.M. Tranquada, J. Phys. Soc. Jpn. 79, 113702 (2010).CrossRefGoogle Scholar
  16. 16.
    Y. Mizuguchi and Y. Takano, Z. Kristallogr. 226, 417 (2011).CrossRefGoogle Scholar
  17. 17.
    N. Chen, Y. Liu, Z. Ma, H. Li, and M. Shahriar Al Hossain, J. Alloys Compd. 633, 233 (2015).CrossRefGoogle Scholar
  18. 18.
    N. Chen, Z. Ma, Y. Liu, X. Li, Q. Cai, H. Li, and L. Yu, J. Alloys Compd. 588, 418 (2014).CrossRefGoogle Scholar
  19. 19.
    Z.T. Zhang, Z.R. Yang, L. Li, L. Pi, S. Tan, and Y.H. Zhang, J. Appl. Phys. 107, 083903 (2010).CrossRefGoogle Scholar
  20. 20.
    M.H. Fang, H.M. Pham, B. Qian, T.J. Liu, E.K. Vehstedt, Y. Liu, L. Spinu, and Z.Q. Mao, Phys. Rev. B 78, 224503 (2008).CrossRefGoogle Scholar
  21. 21.
    W. Bao, Y. Qiu, Q. Huang, M.A. Green, P. Zajdel, M.R. Fitzsimmons, M. Zhernenkov, S. Chang, M. Fang, B. Qian, E.K. Vehstedt, J. Yang, H.M. Pham, L. Spinu, and Z.Q. Mao, Phys. Rev. Lett. 102, 247001 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Materials Genome Institute, Department of PhysicsShanghai UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of High Temperature SuperconductorsShanghai UniversityShanghaiChina
  3. 3.Bonn-Cologne Graduate School for Physics and AstronomyUniversity of BonnBonnGermany

Personalised recommendations