Advertisement

JOM

pp 1–11 | Cite as

Investigation of the Lithium-Containing Aluminum Copper Alloy (AA2099) for the Laser Powder Bed Fusion Process [L-PBF]: Effects of Process Parameters on Cracks, Porosity, and Microhardness

  • Iris RaffeisEmail author
  • Frank Adjei-Kyeremeh
  • Uwe Vroomen
  • Piyada Suwanpinij
  • Simon Ewald
  • Andreas Bührig-Polazcek
Additive Manufacturing of Composites and Complex Materials

Abstract

In order to widen the alloy spectrum for the laser powder bed fusion process, apart from the popular Al-Si-based alloys, AlSi10Mg and AlSi12, the precipitation-hardenable AA2099 wrought alloy has been considered in this work. The effect of varied laser power, scanning speed, a preheated base plate (in situ heat treatment) and post-heat treatments on porosity, cracks and microhardness was observed. The results indicate a successfully printed crack-free part with very minimal porosity at 90 W laser power and 550 mm/s scanning speed with microhardness of 72 HV0,1 at a 520°C preheat treatment temperature. The influence of added titanium aluminide powder in crack removal and grain refinement is also reported in this work.

Notes

Acknowledgements

The authors thank ACCESS e.V. for their support in the analytics. The authors would like to thank the German Research Foundation DFG for the kind support within the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”.

References

  1. 1.
    J. Trapp, A.M. Rubinchik, G. Guss, and M.J. Mathews, Mater. Today 9, 341 (2017).CrossRefGoogle Scholar
  2. 2.
    J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Ekert, O. Prakash, and U. Ramamurty, Acta Mater. 115, 285 (2016).CrossRefGoogle Scholar
  3. 3.
    L. Ruidi, M. Wang, T. Yuan, B. Song, C. Chen, K. Zhou, and P. Cao, Power Technol. 319, 117 (2017).CrossRefGoogle Scholar
  4. 4.
    X. Mujian, D. Gu, G. Yu, D. Dai, H. Chen, and Q. Shi, Int. J. Mach. Tool Manuf. 109, 147 (2016).CrossRefGoogle Scholar
  5. 5.
    P.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Lobber, Z. Wang, A.K. Chaubey, U. Kuhn, and J. Eckert, Mater. Sci. Eng. A 590, 153 (2014).CrossRefGoogle Scholar
  6. 6.
    W. Christian, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach, and R. Poprawe, J. Mater. Process. Technol. 221, 112 (2015).CrossRefGoogle Scholar
  7. 7.
    L. Zheng, Y. Lui, S. Sun, and H. Zhang, Chin. J. Aeronaut. 28, 564 (2015).CrossRefGoogle Scholar
  8. 8.
    L. Zhu, N. Li, and P.R.N. Childs, J. Propul. Power 7, 103 (2018).CrossRefGoogle Scholar
  9. 9.
    E.R. Christopher, D. Bourell, T. Watt, and J. Cohen, Phys. Procedia 83, 909 (2016).CrossRefGoogle Scholar
  10. 10.
    D. Koutny, D. Palousek, L. Pantalejev, C. Hoeller, R. Pichler, L. Tesicky, and J. Kaiser, Materials 11, 298 (2018).CrossRefGoogle Scholar
  11. 11.
    B. Konrad, S. Ullrich, T. Frick, and M. Schmidt, Phys. Proc. 12A, 393 (2011).Google Scholar
  12. 12.
    H. Zhang, H. Zhu, T. Qi, Z. Hu, and X. Zeng, Mater. Sci. Eng. A 656, 47 (2016).CrossRefGoogle Scholar
  13. 13.
    B. Ahuja, M. Karg, K. Yu, Nagulin, and M. Schmidt, Phys. Procedia 56, 135 (2014).CrossRefGoogle Scholar
  14. 14.
    M.C.H. Karg, B. Ahuja, S. Wiesenmeyer, S.V. Kuryntsev, and M. Schmidt, Micromachines 8, 23 (2017).CrossRefGoogle Scholar
  15. 15.
    M.L. Montero Sistiaga, R. Mertens, B. Vrancken, X. Wang, B.V. Hoorweder, J.-P. Kruth, and J.V. Humbeeck, J. Mater. Process. Technol. 238, 437 (2016).CrossRefGoogle Scholar
  16. 16.
    N. Kaufman, M. Imran, T.M. Wischeropp, C. Emmelmann, S. Siddique, and F. Walther, Phys. Procedia 83, 918 (2016).CrossRefGoogle Scholar
  17. 17.
    L.E. Loh, Z.H. Lui, D.G. Zhang, M. Mapar, S.L. Sing, and C.K. Chua, Virtual Phys. Prototyp. 9, 11 (2014).CrossRefGoogle Scholar
  18. 18.
    Y. Wu, X. Wang, J. Li, and Z. Feng, Mater. Sci. Forum. 850, 575 (2016).CrossRefGoogle Scholar
  19. 19.
    E. Balducci, L. Ceschini, S. Messieri, S. Wenner, and R. Holmestad, Mater. Des. 119, 54 (2017).CrossRefGoogle Scholar
  20. 20.
    E. Balducci, L. Ceschini, and S. Messieri, JOM (2018).  https://doi.org/10.1007/s11837-018-3006-x.Google Scholar
  21. 21.
    F. Zhang, J. Shen, X.D. Yan, J.L. Sun, X.L. Sun, and Y. Yang, Rare Met. 33, 28 (2014).CrossRefGoogle Scholar
  22. 22.
    S. Mishraa, V. Kumar Beura, A. Singha, M. Yadava, and N. Nayan, JOM (2018).  https://doi.org/10.1080/02670836.2018.1510074.Google Scholar
  23. 23.
    B. Zhang, Y. Li, and Q. Bai, Chin. J. Mech. Eng. 30, 515 (2017).CrossRefGoogle Scholar
  24. 24.
    V. Araullo-Peters, B. Gault, F. De Geuser, A. Deschamps, and J.M. Cairney, Acta Mater. 66, 208 (2014).CrossRefGoogle Scholar
  25. 25.
    K.S. Prasad, A.A. Gokhale, A.K. Mukhopadhyay, D. Banerjee, and D.B. Goel, Mater. Sci. Forum 1048, 337 (2000).Google Scholar
  26. 26.
    R.J. Rioja and J. Lui, Metall. Mater. Trans. A 43A, 3337 (2012).Google Scholar
  27. 27.
    D. Tsivoulas and P.B. Prangnell, Acta Mater. 77, 16 (2014).CrossRefGoogle Scholar
  28. 28.
    N.J. Harrison, I. Todd, and K. Mumtaz, Acta Mater. 94, 68 (2015).CrossRefGoogle Scholar
  29. 29.
    P. Mercelis and J.P. Kruth, Rapid Prototyp. J. 12, 265 (2006).CrossRefGoogle Scholar
  30. 30.
    M. Zhong, H. Sun, W. Liu, X. Zhu, and J. He, Scr. Mater. 53, 164 (2005).CrossRefGoogle Scholar
  31. 31.
    Z. Tang, Heißrissvermeidung beim Schweißen von Aluminiumlegierungen mit einem Scheibenlaser, Band 53 (Bremen: Strahltechnik BIAS, 2014), pp. 4–15.Google Scholar
  32. 32.
    G. Schulze, Metallugie des Schweißens, 3rd ed. (New York: Springer), pp. 276–277, 296–299.Google Scholar
  33. 33.
    J.A. Spittle and A.A. Cushway, Met. Technol. 6, 13 (1983).Google Scholar
  34. 34.
    W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).CrossRefGoogle Scholar
  35. 35.
    K. Kempen, L. Thijs, J. Van Humbeeck, and J.-P. Kruth, Mater. Sci. Technol. 31, 917 (2015).CrossRefGoogle Scholar
  36. 36.
    M. Brandt, S. Sun, M. Leary, S. Feih, J. Elambasseril, and Q. Liu, Adv. Mater. Res. 633, 147 (2013).Google Scholar
  37. 37.
    M.A. Easton, M. Qian, A. Prasad, and D.H. StJohn, Curr. Opin. Solid State Mater. Sci. 20, 13 (2015).CrossRefGoogle Scholar
  38. 38.
    E. Gumbmann, W. Lefebvre, F. De Geuser, and C. Sigli, Acta Mater. 115, 114 (2016).CrossRefGoogle Scholar
  39. 39.
    C. Wang, G. Min, Q. Lu, and Z. Lu, Int. J. Cast Met. Res. 17, 266 (2014).Google Scholar
  40. 40.
    W. Cassada, G. Shiflet, and E. Starke Jr, J. Phys. C3, 397 (1987).Google Scholar
  41. 41.
    Z. Gao, J.Z. Liu, J.H. Chen, S.Y. Duan, Z.R. Lui, W.Q. Ming, and C.L. Wu, J. Alloys Compd. 624, 26 (2015).Google Scholar
  42. 42.
    J. Huang and A. Ardell, Acta Mater. 115, 114 (2016).Google Scholar
  43. 43.
    B. Decreus, A. Deschamps, F. De Geuser, P. Donnadieu, C. Sigli, and M. Weyland, Acta Mater. 61, 2218 (2013).CrossRefGoogle Scholar
  44. 44.
    A.B. Nikolay, G.E. Dmitry, and A.A. Aksenkov, Multicomponent Phase Diagram, Applications for Commercial Aluminium Alloys, 1st ed. (Moscow: Elsevier, 2005), pp. 257–260.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Iris Raffeis
    • 1
    Email author
  • Frank Adjei-Kyeremeh
    • 1
    • 2
  • Uwe Vroomen
    • 1
  • Piyada Suwanpinij
    • 2
  • Simon Ewald
    • 3
  • Andreas Bührig-Polazcek
    • 1
  1. 1.Foundry InstituteRWTH Aachen UniversityAachenGermany
  2. 2.The Sirindhorn International Thai-German Graduate School of Engineering (TGGS-KMUTNB)North BangkokThailand
  3. 3.Digital Additive ProductionRWTH Aachen UniversityAachenGermany

Personalised recommendations