pp 1–10 | Cite as

Mechanical and Corrosion Properties of Two Precipitation-Hardened Mg-Y-Nd-Gd-Dy Alloys with Small Changes in Chemical Composition

  • P. MaierEmail author
  • N. Lauth
  • C. L. Mendis
  • M. Bechly
  • N. Hort
Characterization of Biodegradable Medical Materials


Precipitation hardening in Mg-Y-Nd alloys (WE-type) is based on finely dispersed particles offering an effective strengthening mechanism to achieve high strength at moderate ductility. However, these particles often affect corrosion by being more noble than the matrix. Biodegradable implant materials should show a corrosion rate fit to its application but should be free of pitting corrosion. Especially deep and narrow pits act as notches and cause increased mechanical stress leading into early failure. WE43 has already shown to have an acceptable biological response. In this study, two Mg-Y-Nd-Gd-Dy alloys, WE32 and WE33, in extruded, solution and precipitation heat-treated conditions have been investigated. The difference in alloy composition is not very high. Solution heat treatment (T4) causes grain growth and strength loss. The ageing response to peak hardness depends on the temperature. A rather short ageing response was observed for 250°C, and highest hardness has been found for 200°C at longer ageing time but higher hardness compared to 250°C. Grain growth during ageing is not significant. The higher alloyed alloy WE33 shows better mechanical strength, but less ductility. Corrosion was evaluated with immersion and potentiodynamic polarization in Ringer Acetate solution. The corrosion rate strongly depends on the alloy and heat-treatment condition as well as on the test method. The highest corrosion rate is observed in the solution-treated condition. The peak aged alloy shows the lowest corrosion rate, but non-uniform corrosion and has been evaluated by the pitting factor.



The authors thank the Extrusion Center Berlin in Germany for extruding the bars and acknowledge the support of Hartmut Habeck and Benjamin Clausius from UAS Stralsund. Julia Bode from TU Bergakademie Freiberg, Germany, is thanked for ICP-OES measurements.


  1. 1.
    D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, and L. Qin, Biomaterials 112, 287 (2016).CrossRefGoogle Scholar
  2. 2.
    A.D. Sudholz, K. Gusieva, X.B. Chen, B.C. Muddle, M.A. Gibson, and N. Birbilis, Corros. Sci. 53, 2277 (2011).CrossRefGoogle Scholar
  3. 3.
    M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).CrossRefGoogle Scholar
  4. 4.
    N. Hort, Y. Huang, D. Fechner, M. Störmer, C. Blawert, F. Witte, C. Vogt, H. Drücker, R. Willumeit, K.U. Kainer, and F. Feyerabend, Acta Biomater. 6, 1714 (2010).CrossRefGoogle Scholar
  5. 5.
    H. Kalb, A. Rzany, and B. Henzel, Corros. Sci. 57, 122 (2012).CrossRefGoogle Scholar
  6. 6.
    J.M. Seitz, A. Lucas, and M. Kirschner, JOM 68, 1177 (2016).CrossRefGoogle Scholar
  7. 7.
    C. Rapetto and M. Leoncini, J. Thorac. Dis. 9, 903 (2017).CrossRefGoogle Scholar
  8. 8.
    Magnesium Elektron UK, data sheet 467.Google Scholar
  9. 9.
    D. Tolnai, C.L. Mendis, A. Stark, G. Szakacs, B. Wiese, K.U. Kainer, and N. Hort, Mater. Lett. 102–103, 62 (2013).CrossRefGoogle Scholar
  10. 10.
    B. Smola, I. Stulikova, F. von Buch, and B.L. Mordike, Mater. Sci. Eng., A 324, 113 (2002).CrossRefGoogle Scholar
  11. 11.
    L.L. Rokhlin, T.V. Dobatkina, N.I. Nikitina, and I.E. Tarytina, Met. Sci. Heat Treat. 52, 588 (2011).Google Scholar
  12. 12.
    Y.H. Kang, D. Wu, and R.H.E. Chen, J. Magnes. Alloys 2, 109 (2014).CrossRefGoogle Scholar
  13. 13.
    F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, Acta Biomater. 6, 1834 (2010).CrossRefGoogle Scholar
  14. 14.
    L. Yang, N. Hort, D. Laipple, D. Höche, Y. Huang, K.U. Kainer, R. Willumeit, and F. Feyerabend, Acta Biomater. 9, 8475 (2013).CrossRefGoogle Scholar
  15. 15.
    ASTM Standard G46-94, Standard Guide for Examination and Evaluation of Pitting Corrosion (Washington, DC: ASTM, 1994).Google Scholar
  16. 16.
    R.W. Revie and H.H. Uhlig, Corrosion and Corrosion Control (Hoboken: Wiley, 2008), p. 17.CrossRefGoogle Scholar
  17. 17.
    Z. Ahmad, Principles of Corrosion Engineering and Corrosion Control (Oxford: Butterworth-Heinemann, 2006), p. 266.Google Scholar
  18. 18.
    F. Witte, J. Fischer, J. Nellesen, C. Vogt, J. Vogt, T. Donath, and F. Beckmann, Acta Biomater. 6, 1792 (2010).CrossRefGoogle Scholar
  19. 19.
    V. Kree, J. Bohlen, D. Letzig, and K.U. Kainer, Pract. Metallogr. 41, 233 (2004).Google Scholar
  20. 20.
    N. Li, C. Guo, Y.H. Wu, Y.F. Zheng, and L.Q. Ruan, Corros. Eng., Sci. Technol. 47, 346 (2012).CrossRefGoogle Scholar
  21. 21.
    P. Maier, S. Gavras, M. Freese, G. Schott, and N. Hort, in Proceedings of the 11th International Conference on Magnesium Alloys and their Applications: Mg2018, Old Windsor, UK (2018).Google Scholar
  22. 22.
    Y. Zheng, Magnesium Alloys as Degradable Biomaterials (Boca Raton: CRC Press, 2015), p. 345.CrossRefGoogle Scholar
  23. 23.
    S. Gorsse, C.R. Hutchinson, B. Chevalier, and J.F. Nie, J. Alloys Compd. 392, 253 (2005).CrossRefGoogle Scholar
  24. 24.
    P. Maier, R. Peters, C.L. Mendis, S. Müller, and N. Hort, JOM 68, 1183 (2016).CrossRefGoogle Scholar
  25. 25.
    D. Orlov, K.D. Ralston, N. Birbilis, and Y. Esttin, Acta Mater. 59, 6176 (2011).CrossRefGoogle Scholar
  26. 26.
    L.G. Bland, B.C. Rincon Troconis, R.J. Santucci, J.M. Fitz-Gerald, and J.R. Scully, Corrosion 72, 1226 (2016).CrossRefGoogle Scholar
  27. 27.
    X. Ma, Q. Jiang, Y. Li, and B.R. Hou, Int. J. Electrochem. (2016)Google Scholar
  28. 28.
    P. Maier, M. Bechly, and N. Hort, in Contributed Papers from Materials Science and TechnologyMS&T17, p. 76 (2017)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • P. Maier
    • 1
    Email author
  • N. Lauth
    • 1
  • C. L. Mendis
    • 2
  • M. Bechly
    • 1
  • N. Hort
    • 3
  1. 1.University of Applied Science StralsundStralsundGermany
  2. 2.Brunel University London, Brunel Centre for Advanced Solidification TechnologyLondonUK
  3. 3.Helmholtz-Zentrum Geesthacht, Magnesium Innovation CentreGeesthachtGermany

Personalised recommendations