, Volume 71, Issue 9, pp 3223–3229 | Cite as

Fine Grains Reduce Cracking Susceptibility During Solidification: Insights from Phase-Field Simulations

  • Ping Jiang
  • Shaoning GengEmail author
  • Xinyu Shao
  • Gaoyang Mi
  • Chunming Wang
  • Han Wu
  • Chu Han
  • Song Gao
Solidification Defects in Additive Manufactured Materials


Hot cracking is commonly observed in welding and metal additive manufacturing processes. In this work, the effects of grain size on cracking susceptibility during solidification were investigated using two-dimensional phase-field simulations. Al-3.0 wt.% Cu alloy was chosen as an example, and the grain size was controlled by adjusting the primary dendritic arm spacing. It was found that fine grains can significantly reduce liquid channel segregation and facilitate earlier coalescence of adjacent grains to resist cracking. Moreover, the cracking susceptibility indexes were predicted from the microstructurally complex phase-field data, showing good agreement with the simulated liquid channel morphology and segregation. Both the liquid channel characteristics and cracking susceptibility index demonstrated how grain refining reduces cracking susceptibility during solidification in welding and metal additive manufacturing processes.



This research has been supported by the National Basic Research Program (973 Program) of China under Grant No. 2014CB046703, the National Natural Science Foundation of China under Grant Nos. 51705173 and 51721092, the Fundamental Research Funds for the Central Universities, HUST: No. 2018JYCXJJ034, the Postdoctoral Science Foundation of China under Grant No. 2018M632837, and the opening project of State Key Laboratory of Digital Manufacturing Equipment and Technology (HUST) under Grant No. DMETKF2018001. The calculations in this work were performed on TianHe-2, with thanks for the support of the National Supercomputer Center in Guangzhou (NSCC-GZ).


  1. 1.
    S. Kou, Welding Metallurgy, 2nd ed. (Hoboken: Wiley, 2013), pp. 263–299.Google Scholar
  2. 2.
    J.H. Dudas and F.R. Collins, Weld. J. 45, 241 (1966).Google Scholar
  3. 3.
    S. Kou and Y. Le, Metall. Trans. A 16, 1345 (1985).CrossRefGoogle Scholar
  4. 4.
    K. Shinozaki, P. Wen, M. Yamamoto, K. Kadoi, Y. Kohno, and T. Komori, J. Jpn. Weld. Soc. 29, 90s (2011).CrossRefGoogle Scholar
  5. 5.
    J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock, Nature 549, 365 (2017).CrossRefGoogle Scholar
  6. 6.
    I. Todd, Nature 549, 342 (2017).CrossRefGoogle Scholar
  7. 7.
    S. Kou, Acta Mater. 88, 366 (2015).CrossRefGoogle Scholar
  8. 8.
    S. Kou, Weld. J. 94, 374s (2015).Google Scholar
  9. 9.
    D. Tourret, Y. Song, A.J. Clarke, and A. Karma, Acta Mater. 122, 220 (2017).CrossRefGoogle Scholar
  10. 10.
    M. Ohno and K. Matsuura, Phys. Rev. E 79, 31603 (2009).CrossRefGoogle Scholar
  11. 11.
    L. Wang, Y. Wei, X. Zhan, F. Yu, X. Cao, C. Gu, and W. Ou, J. Mater. Process. Tech. 246, 22 (2017).CrossRefGoogle Scholar
  12. 12.
    F. Yu, Y. Wei, Y. Ji, and L.Q. Chen, J. Mater. Process. Tech. 255, 285 (2018).CrossRefGoogle Scholar
  13. 13.
    L. Wang and Y. Wei, JOM-US 70, 1 (2018).CrossRefGoogle Scholar
  14. 14.
    L. Wang, N. Wang, and N. Provatas, Acta Mater. 126, 302 (2017).CrossRefGoogle Scholar
  15. 15.
    S. Geng, P. Jiang, X. Shao, G. Mi, H. Wu, Y. Ai, C. Wang, C. Han, R. Chen, and W. Liu, Scr. Mater. 150, 120 (2018).CrossRefGoogle Scholar
  16. 16.
    B. Böttger, M. Apel, B. Santillana, and D.G. Eskin, Metall. Mater. Trans. A 44, 3765 (2013).CrossRefGoogle Scholar
  17. 17.
    T. Takaki, M. Ohno, T. Shimokawabe, and T. Aoki, Acta Mater. 81, 272 (2014).CrossRefGoogle Scholar
  18. 18.
    H.J. Diepers, D. Ma, and I. Steinbach, J. Cryst. Growth 237–239, 149 (2002).CrossRefGoogle Scholar
  19. 19.
    J. Liu and S. Kou, Acta Mater. 100, 359 (2015).CrossRefGoogle Scholar
  20. 20.
    H. Xing, X. Dong, H. Wu, G. Hao, J. Wang, C. Chen, and K. Jin, Sci. Rep. 6, 26625 (2016).CrossRefGoogle Scholar
  21. 21.
    S.H. Han and R. Trivedi, Acta Mater. 42, 25 (1994).CrossRefGoogle Scholar
  22. 22.
    W. Huang, X. Geng, and Y. Zhou, J. Cryst. Growth 134, 105 (1993).CrossRefGoogle Scholar
  23. 23.
    D. Tourret and A. Karma, Acta Mater. 82, 64 (2015).CrossRefGoogle Scholar
  24. 24.
    D. Tourret and A. Karma, Acta Mater. 61, 6474 (2013).CrossRefGoogle Scholar
  25. 25.
    S. Terzi, L. Salvo, M. Suery, A.K. Dahle, and E. Boller, Acta Mater. 58, 20 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Ping Jiang
    • 1
  • Shaoning Geng
    • 1
    Email author
  • Xinyu Shao
    • 1
  • Gaoyang Mi
    • 2
  • Chunming Wang
    • 2
  • Han Wu
    • 1
  • Chu Han
    • 1
  • Song Gao
    • 1
  1. 1.The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations