Advertisement

JOM

pp 1–8 | Cite as

Effect of Twinning Behavior on Dynamic Recrystallization During Extrusion of AZ31 Mg Alloy

  • Liwei LuEmail author
  • Xiaoye Liu
  • Dongfeng Shi
  • Min Ma
  • Zhongchang WangEmail author
Technical Article
  • 63 Downloads

Abstract

A new severe plastic deformation method, viz. integrated dual-directional extrusion and spiral deformation, was adopted to process AZ31 Mg alloy and found to be very effective for refining the grains and softening the texture. We also investigated how twinning in AZ31 alloy affected the dynamic recrystallization (DRX) during hot extrusion, revealing that multiple twins can offer increased nucleation sites and enough energy to trigger DRX. Moreover, even after dual-directional extrusion and spiral deformation, a misorientation angle of ~ 86° remained between the primary tension twin and matrix or ~ 60° between the secondary tension twin and primary twin, being induced by {10–12} tension twin variants (primary and secondary) and resulting in a dispersed misorientation angle distribution. Nucleation of DRX occurred at the tip of preexisting twins, although primary and secondary tension twins can also act as nucleation sites for DRX.

Notes

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Grants Nos. 51505143 and 51704112) and the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 17B089) with financial support from the China Postdoctoral Science Foundation (Grant No. 2016T90759).

References

  1. 1.
    X. Xie, J. Shen, F.B. Gong, D. Wu, T. Zhang, X. Luo, and Y. Li, Int. J. Adv. Manuf. Technol. 82, 75 (2016).CrossRefGoogle Scholar
  2. 2.
    R. Elliott, K. Coley, S. Mostaghel, and M. Barat, Miner. Met. Mater. Soc. 70, 681 (2018).Google Scholar
  3. 3.
    Y. Liu, F. Li, and H.W. Jiang, Int. J. Adv. Manuf. Technol. 92, 4293 (2017).CrossRefGoogle Scholar
  4. 4.
    J.B. Patel, X.L. Yang, C.L. Mendis, and Z.Y. Fan, Miner. Met. Mater. Soc. 69, 1071 (2017).CrossRefGoogle Scholar
  5. 5.
    F. Li, H.W. Jiang, and Q. Chen, Int. J. Adv. Manuf. Technol. 90, 73 (2017).CrossRefGoogle Scholar
  6. 6.
    F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod, J. Alloys Compd. 673, 327 (2016).CrossRefGoogle Scholar
  7. 7.
    H.J. Hu, H. Wang, Z.Y. Zhai, Y.Y. Li, J.Z. Fan, and Z.W. Ou, Int. J. Adv. Manuf. Technol. 74, 423 (2014).CrossRefGoogle Scholar
  8. 8.
    W.W. Lei, W. Liang, H.X. Wang, and H.W. Guo, Miner. Met. Mater. Soc. 69, 2297 (2017).CrossRefGoogle Scholar
  9. 9.
    H.J. Hu, H. Wang, Z.Y. Zhai, Y.Y. Li, J.Z. Fan, and Z.W. Ou, Int. J. Adv. Manuf. Technol. 76, 1621 (2015).CrossRefGoogle Scholar
  10. 10.
    V.S. Rao, B.P. Kashyap, N. Prabhu, and P.D. Hodgson, Mater. Sci. Eng. A 486, 341 (2008).CrossRefGoogle Scholar
  11. 11.
    B. Talebanpour, R. Ebrahimi, and K. Janghorban, Mater. Sci. Eng. A 527, 141 (2009).CrossRefGoogle Scholar
  12. 12.
    P. Palai, N. Prabhu, and B.P. Kashyap, J. Mater. Eng. Perform. 26, 1825 (2017).CrossRefGoogle Scholar
  13. 13.
    Y. Xu, L.X. Hu, Y. Sun, J.B. Jia, J.F. Jiang, and Q.G. Ma, Trans. Nonferr. Met. Soc. China. 25, 381 (2015).CrossRefGoogle Scholar
  14. 14.
    Y. Liu, S. Cai, and L. Dai, Mater. Sci. Eng. A 65, 878 (2016).CrossRefGoogle Scholar
  15. 15.
    F. Li, H.W. Jiang, and Y. Liu, Miner. Met. Mater. Soc. 69, 93 (2017).CrossRefGoogle Scholar
  16. 16.
    I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, and C.N. Tomé, Philos. Mag. 90, 2161 (2010).CrossRefGoogle Scholar
  17. 17.
    P. Molnár, A. Jäger, and P. Lejček, Scripta Mater. 67, 467 (2012).CrossRefGoogle Scholar
  18. 18.
    Y.L. Chen, L. Jin, J. Dong, Z.Y. Zhang, and F.H. Wang, Mater. Charact. 118, 363 (2016).CrossRefGoogle Scholar
  19. 19.
    Z.R. Zeng, Y.M. Zhu, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, and J.F. Nie, Scripta Mater. 107, 127 (2015).CrossRefGoogle Scholar
  20. 20.
    L.W. Lu, T.M. Liu, Y. Chen, L.G. Wang, and Z.C. Wang, Mater. Des. 35, 138 (2012).CrossRefGoogle Scholar
  21. 21.
    E. Popova, A.P. Brahme, Y. Staraselski, S.R. Agnew, R.K. Mishra, and K. Inal, Mater. Des. 96, 446 (2016).CrossRefGoogle Scholar
  22. 22.
    F. Li, X. Zeng, and N. Bian, Mater. Lett. 135, 79 (2014).CrossRefGoogle Scholar
  23. 23.
    J. Stráská, M. Janeček, J. Čížek, J. Stráský, and B. Hadzima, Mater. Charact. 94, 69 (2014).CrossRefGoogle Scholar
  24. 24.
    Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, and J.F. Nie, Acta Mater. 105, 479 (2016).CrossRefGoogle Scholar
  25. 25.
    S.H. Park, S.H. Kim, H.S. Kim, J. Yoon, and B.S. You, J. Alloys Compd. 667, 170 (2016).CrossRefGoogle Scholar
  26. 26.
    Q.S. Yang, B. Jiang, H.C. Pan, B. Song, Z.T. Jiang, J.H. Dai, L.F. Wang, and F.S. Pan, J. Magnes. Alloy. 2, 220 (2014).CrossRefGoogle Scholar
  27. 27.
    Q.S. Yang, B. Jiang, J.J. He, B. Song, W.J. Liu, H.W. Dong, and F.S. Pan, Mater. Sci. Eng. A 612, 187 (2014).CrossRefGoogle Scholar
  28. 28.
    Q. Ma, B. Li, E.B. Marin, and S.J. Horstemeyer, Scr. Mater. 65, 823 (2011).CrossRefGoogle Scholar
  29. 29.
    S.W. Xu, K. Oh-ishi, S. Kamado, and T. Homma, Scr. Mater. 65, 875 (2011).CrossRefGoogle Scholar
  30. 30.
    J. Su, A.S.H. Kabir, M. Sanjari, and S. Yue, Mater. Sci. Eng. A 674, 343 (2016).CrossRefGoogle Scholar
  31. 31.
    W. Guo, Q.D. Wang, B. Ye, and H. Zhou, J. Alloys Compd. 552, 409 (2013).CrossRefGoogle Scholar
  32. 32.
    J.B. Lin, X.Y. Wang, W.J. Ren, X.X. Yang, and Q.D. Wang, J. Mater. Sci. Technol. 32, 783 (2016).CrossRefGoogle Scholar
  33. 33.
    F.R. Elsayed, T.T. Sasaki, T. Ohkubo, H. Takahashi, S.W. Xu, S. Kamado, and K. Hono, Mater. Sci. Eng. A 588, 318 (2013).CrossRefGoogle Scholar
  34. 34.
    Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, and J.F. Nie, Scr. Mater. 108, 6 (2015).CrossRefGoogle Scholar
  35. 35.
    L.W. Lu, T.M. Liu, Y. Chen, and Z.C. Wang, Mater. Charact. 67, 93 (2012).CrossRefGoogle Scholar
  36. 36.
    L.W. Lu, T.M. Liu, M.J. Tan, J. Chen, and Z.C. Wang, Mater. Des. 39, 131 (2012).CrossRefGoogle Scholar
  37. 37.
    F. Li, X. Zeng, and G.J. Cao, Mater. Sci. Eng. A 639, 395 (2015).CrossRefGoogle Scholar
  38. 38.
    D. Peláez, C. Isaza, J.M. Meza, P. Fernández-Morales, W.Z. Misiolek, and E. Mendoza, J. Mater. Res. Technol. 4, 392 (2015).CrossRefGoogle Scholar
  39. 39.
    C.J. Li, H.F. Sun, X.W. Li, J.L. Zhang, W.B. Fang, and Z.Y. Tan, J. Alloys Compd. 652, 122 (2015).CrossRefGoogle Scholar
  40. 40.
    Z.C. Wang, M. Saito, K.P. McKenna, and Y. Ikuhara, Nat. Commun. 5, 32 (2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-Cut MaterialHunan University of Science and TechnologyXiangtanPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringCentral South UniversityChangshaPeople’s Republic of China
  3. 3.Department of Quantum Materials Science and TechnologyInternational Iberian Nanotechnology Laboratory (INL)BragaPortugal

Personalised recommendations