Advertisement

JOM

pp 1–8 | Cite as

Response of Hydrogen Desorption and Hydrogen Embrittlement to Precipitation of Nanometer-Sized Copper in Tempered Martensitic Low-Carbon Steel

  • Yu-Chen Lin
  • Delphic Chen
  • Meng-Hsuan Chiang
  • Guan-Ju Cheng
  • Hsin-Chih Lin
  • Hung-Wei YenEmail author
Advanced High-Strength Steels for Automobiles

Abstract

This work is aimed at studying the hydrogen–copper precipitate interaction in a martensitic steel. Analysis of hydrogen thermal desorption revealed that precipitation of copper particles enhances the hydrogen trapping capability of tempered copper-containing martensitic steel. Moreover, precipitation of copper could make hydrogen retain longer in the steel, indicating a retarded diffusion of hydrogen. Copper precipitates as a hydrogen trapping site were observed to preserve an activation energy of 35.6 kJ mol−1 by Choo-and-Lee method after release for 4 h at room temperature. This value is higher than the activation energy of dislocation. Moreover, tempered steel with copper particles displayed better resistance to hydrogen embrittlement in notched, slow-strain-rate tensile tests.

Notes

Acknowledgements

The authors acknowledge the Ministry of Science and Technology of the Republic of China for providing financial support under Contract MOST-106-2628-E-002-015-MY3 and Contract MOST-106-2622-8-006-001. The authors especially thank Dr. Steve Woei Ooi at the Department of Materials Science and Metallurgy, University of Cambridge, for his technical support in TDA experiments.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    W.H. Johnson, Proc. Roy. Soc. Lond. 23, 168 (1874).Google Scholar
  2. 2.
    E.M.K. Hillier and M.J. Robinson, Corros. Sci. 46, 715 (2004).CrossRefGoogle Scholar
  3. 3.
    G.W. Hollenberg, E.P. Simonen, G. Kalinin, and A. Terlain, Fusion Eng. Des. 28, 190 (1995).CrossRefGoogle Scholar
  4. 4.
    R.E. Melchers, Corros. Sci. 47, 2391 (2005).CrossRefGoogle Scholar
  5. 5.
    G. Lovicu, M. Bottazzi, F. D’Aiuto, M. De Sanctis, A. Dimatteo, C. Santus, and R. Valentini, Metall. Mater. Trans. A 43, 4075 (2012).CrossRefGoogle Scholar
  6. 6.
    A. Turnbull, Int. J. Hydrog. Energy 40, 16961 (2015).CrossRefGoogle Scholar
  7. 7.
    M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson, Acta Mater. 60, 2739 (2012).CrossRefGoogle Scholar
  8. 8.
    M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis, and I.M. Robertson, Acta Mater. 59, 1601 (2011).CrossRefGoogle Scholar
  9. 9.
    H.K. Birnbaum and P. Sofronis, Mater. Sci. Eng. A 176, 12 (1994).CrossRefGoogle Scholar
  10. 10.
    D.S. Shih, I.M. Robertson, and H.K. Birnbaum, Acta Metall. 36, 111 (1988).CrossRefGoogle Scholar
  11. 11.
    A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, and R.O. Ritchie, J. Mech. Phys. Solids 112, 403 (2018).CrossRefGoogle Scholar
  12. 12.
    A.A. Barani, D. Ponge, and D. Raabe, Steel Res. Int. 77, 704 (2006).CrossRefGoogle Scholar
  13. 13.
    O. Bouaziz, H. Zurob, and M. Huang, Steel Res. Int. 84, 937 (2013).Google Scholar
  14. 14.
    B.D. Craig and G. Krauss, Metall. Trans. A 11, 1799 (1980).CrossRefGoogle Scholar
  15. 15.
    F. HajyAkbary, J. Sietsma, A.J. Bottger, and M.J. Santofimia, Mater. Sci. Eng. A 639, 208 (2015).CrossRefGoogle Scholar
  16. 16.
    G. Krauss, Metall. Mater. Trans. A 32, 861 (2001).CrossRefGoogle Scholar
  17. 17.
    F.-G. Wei and K. Tsuzaki, Scr. Mater. 52, 467 (2005).CrossRefGoogle Scholar
  18. 18.
    X. Zhu, W. Li, T.Y. Hsu, S. Zhou, L. Wang, and X. Jin, Scr. Mater. 97, 21 (2015).CrossRefGoogle Scholar
  19. 19.
    H. Asahi, D. Hirakami, and S. Yamasaki, ISIJ Int. 43, 7 (2003).CrossRefGoogle Scholar
  20. 20.
    J. Lee, T. Lee, Y.J. Kwon, D.-J. Mun, J.-Y. Yoo, and C.S. Lee, Met. Mater. Int. 22, 364 (2016).CrossRefGoogle Scholar
  21. 21.
    A. Nagao, M.L. Martin, M. Dadfarnia, P. Sofronis, and I.M. Robertson, Acta Mater. 74, 244 (2014).CrossRefGoogle Scholar
  22. 22.
    M. Mujahid, ASM Int. 7, 11 (1998).Google Scholar
  23. 23.
    S. Takaki, M. Fujioka, S. Aihara, Y. Nagataki, T. Yamashita, N. Sano, Y. Adachi, M. Nomura, and H. Yaguchi, Mater. Trans. 45, 2239 (2004).CrossRefGoogle Scholar
  24. 24.
    S. Komazaki, A. Koyama, and T. Misawa, Mater. Trans. 43, 2213 (2002).CrossRefGoogle Scholar
  25. 25.
    E.J. Song, D.-W. Suh, and H.K.D.H. Bhadeshia, Comput. Mater. Sci. 79, 36 (2013).CrossRefGoogle Scholar
  26. 26.
    M. Wang, E. Akiyama, and K. Tsuzaki, Mater. Sci. Eng. A 398, 37 (2005).CrossRefGoogle Scholar
  27. 27.
    N. Maruyama, M. Sugiyama, T. Hara, and H. Tamehiro, Mater. Trans. 40, 268 (1999).CrossRefGoogle Scholar
  28. 28.
    G.R. Speich and R.A. Oriani, Trans. Metall. Soc. AIME 233, 623 (1965).Google Scholar
  29. 29.
    H.E. Kissinger, Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
  30. 30.
    H. Hagi and Y. Hayashi, Trans. Jpn. Inst. Met. 28, 368 (1987).CrossRefGoogle Scholar
  31. 31.
    W.Y. Choo and J.Y. Lee, Metall. Trans. A A 13, 135 (1982).CrossRefGoogle Scholar
  32. 32.
    J.S. Kim, Y.H. Lee, D.L. Lee, K.T. Park, and C.S. Lee, Mater. Sci. Eng. A 505, 105 (2009).CrossRefGoogle Scholar
  33. 33.
    D.P. Escobar, K. Verbeken, L. Duprez, and M. Verhaege, Mater. Sci. Eng. A 551, 50 (2012).CrossRefGoogle Scholar
  34. 34.
    R.L.S. Thomas, D.M. Li, R.R. Gangloff, and J.R. Scully, Metall. Mater. Trans. A 33, 1991 (2002).CrossRefGoogle Scholar
  35. 35.
    G.M. Pressouyre, Metall. Trans. A 10, 1571 (1979).CrossRefGoogle Scholar
  36. 36.
    K.-I. Ebihara, T. Suzudo, H. Kaburaki, K. Takai, and S. Takebayashi, ISIJ Int. 47, 1131 (2007).CrossRefGoogle Scholar
  37. 37.
    H.K.D.H. Bhadeshia, ISIJ Int. 56, 24 (2016).CrossRefGoogle Scholar
  38. 38.
    F.G. Wei and K. Tsuzaki, Metall. Mater. Trans. A 37A, 331 (2006).CrossRefGoogle Scholar
  39. 39.
    H.M. Lee, Metall. Trans. A 7, 431 (1976).CrossRefGoogle Scholar
  40. 40.
    Y. Ebisuzaki and M. O’Keeffe, Progr. Solid State Chem. 4, 187 (1967).CrossRefGoogle Scholar
  41. 41.
    H. Mangnusson and K. Frisk, J. Phase Equilib. 38, 5 (2017).CrossRefGoogle Scholar
  42. 42.
    Y.-S. Chen, D. Haley, S.S.A. Gerstl, A.J. London, F. Sweeney, R.A. Wepf, W.M. Rainforth, P.A.J. Bagot, and M.P. Moody, Science 355, 1196 (2017).CrossRefGoogle Scholar
  43. 43.
    T. Depover and K. Verbeken, Int. J. Hydrog. Energy 43, 3050 (2018).CrossRefGoogle Scholar
  44. 44.
    H.-W. Yen, M.-H. Chiang, Y.-C. Lin, D. Chen, C.-Y. Huang, and H.-C. Lin, Metals 7, 253 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yu-Chen Lin
    • 1
  • Delphic Chen
    • 2
  • Meng-Hsuan Chiang
    • 1
  • Guan-Ju Cheng
    • 1
  • Hsin-Chih Lin
    • 1
  • Hung-Wei Yen
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringNational Taiwan UniversityTaipeiTaiwan, Republic of China
  2. 2.Iron and Steel R&D DepartmentChina Steel CorporationKaohsiungTaiwan, Republic of China

Personalised recommendations