Advertisement

JOM

pp 1–7 | Cite as

Optimization of a Gelatin–Potassium Phosphate Aqueous Two-Phase System for the Preparation of Hydrogel Microspheres

  • Pelin Erkoc
  • Nihal Olcay Dogan
  • Seda KizilelEmail author
Protein-Based Structural Materials
  • 15 Downloads

Abstract

An aqueous two-phase system provides a simple route toward the preparation of gelatin emulsions. Here, we present a simple method to generate water-in-water (w/w) emulsions from an aqueous two-phase system: gelatin and potassium phosphate (K2HPO4) salt. Liquid gelatin forms as the dispersed phase of the two-phase emulsion system, and gelatin microspheres can be retrieved after a visible light-induced crosslinking reaction. We investigated the effect of the continuous phase volume ratio on the formation of the phase-separation and emulsification process. We also studied the influence of the polymerization method on the size and morphology of gelatin hydrogel particles. The results demonstrated that K2HPO4 is an appropriate phase-forming salt, where biodegradable gelatin particles obtained through this w/w emulsion system have potential for biomedical applications. In addition, sustained release of a model molecule, methylene blue, was observed for up to 5 days from gelatin particles. This system is advantageous because if provides an inexpensive emulsion platform that avoids the use of organic solvents or auxiliary polymers to form a continuous phase.

Notes

Acknowledgements

Seda Kizilel acknowledges Koc University Seed Fund Program (SF.00028).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11837_2019_3328_MOESM1_ESM.pdf (215 kb)
Supplementary material 1 (PDF 215 kb)

References

  1. 1.
    M. Cetin, I. Vural, A. Atila, and Y. Kadioglu, Turk. J. Chem. 34, 509 (2010).Google Scholar
  2. 2.
    K.D. Barut, F.F.C. Ari, and F. Oner, Turk. J. Chem. 29, 27 (2005).Google Scholar
  3. 3.
    P. Erkoc, A. Cingoz, T.B. Onder, S. Kizilel, Macromol. Biosci. 17, 1600267 (2017). CrossRefGoogle Scholar
  4. 4.
    A. Mahapatro and D.K. Singh, J. Nanobiotechnol. 9, 55 (2011).CrossRefGoogle Scholar
  5. 5.
    P. Erkoc, F. Seker, T. Bagci-Onder, and S. Kizilel, Macromol. Biosci. 18, 1700369 (2018).CrossRefGoogle Scholar
  6. 6.
    O. Franssen and W.E. Hennink, Int. J. Pharm. 168, 1 (1998).CrossRefGoogle Scholar
  7. 7.
    R.J.H. Stenekes, O. Franssen, E.M.G. van Bommel, D.J.A. Crommelin, and W.E. Hennink, Int. J. Pharm. 183, 29 (1999).CrossRefGoogle Scholar
  8. 8.
    Y. Toshio, H. Mitsuru, M. Shozo, and S. Hitoshi, Int. J. Pharm. 8, 131 (1981).CrossRefGoogle Scholar
  9. 9.
    M. Nagae, T. Ikeda, Y. Mikami, H. Hase, H. Ozawa, K. Matsuda, H. Sakamoto, Y. Tabata, M. Kawata, and T. Kubo, Tissue Eng. 13, 147 (2007).CrossRefGoogle Scholar
  10. 10.
    M.G. Cascone, L. Lazzeri, C. Carmignani, and Z. Zhu, J. Mater. Sci. Mater. Med. 13, 523 (2002).CrossRefGoogle Scholar
  11. 11.
    R. Jeyanthi and K.P. Rao, Int. J. Pharm. 35, 177 (1987).CrossRefGoogle Scholar
  12. 12.
    J. Esquena, Curr. Opin. Colloid Interface Sci. 25, 109 (2016).CrossRefGoogle Scholar
  13. 13.
    A.C. Okur, P. Erkoc, and S. Kizilel, Colloids Surf. B Biointerfaces 147, 191 (2016).CrossRefGoogle Scholar
  14. 14.
    B. Marcos Luciano, J. Mariana Volpato, B.-P. Fernanda Belincanta, Y. Tao, A. Gavin Paul, and J. David Simon, Curr. Drug Deliv. 15, 64 (2018).Google Scholar
  15. 15.
    C.R. Ding, S.M. Xu, J.D. Wang, Y. Liu, P. Chen, and S. Feng, Mater. Sci. Eng. C Mater. Biol. Appl. 32, 670 (2012).CrossRefGoogle Scholar
  16. 16.
    M. Iqbal, Y. Tao, S. Xie, Y. Zhu, D. Chen, X. Wang, L. Huang, D. Peng, A. Sattar, M.A.B. Shabbir, H.I. Hussain, S. Ahmed, and Z. Yuan, Biol. Proced. Online 18, 18 (2016).CrossRefGoogle Scholar
  17. 17.
    R.R. Soares, A.M. Azevedo, J.M. Van Alstine, and M.R. Aires-Barros, Biotechnol. J. 10, 1158 (2015).CrossRefGoogle Scholar
  18. 18.
    A.J. Kuijpers, G.H. Engbers, J. Krijgsveld, S.A. Zaat, J. Dankert, and J. Feijen, J. Biomater. Sci. Polym. Ed. 11, 225 (2000).CrossRefGoogle Scholar
  19. 19.
    A.J. Kuijpers, G.H.M. Engbers, J. Feijen, S.C. De Smedt, T.K.L. Meyvis, J. Demeester, J. Krijgsveld, S.A.J. Zaat, and J. Dankert, Macromolecules 32, 3325 (1999).CrossRefGoogle Scholar
  20. 20.
    N. Adhirajan, N. Shanmugasundaram, and M. Babu, J. Microencapsul. 24, 659 (2007).CrossRefGoogle Scholar
  21. 21.
    A.C.K. Sato, F.A. Perrechil, A.A.S. Costa, R.C. Santana, and R.L. Cunha, Food Res. Int. 75, 244 (2015).CrossRefGoogle Scholar
  22. 22.
    M. Mooney and W.E. Wolstenholme, J. Appl. Phys. 25, 1098 (1954).CrossRefGoogle Scholar
  23. 23.
    X. Liu, C. Zhang, T. Xiong, D. Chen, and A. Zhong, J. Appl. Polym. Sci. 106, 1448 (2007).CrossRefGoogle Scholar
  24. 24.
    A.A. Umar, I.B.M. Saaid, and A.A. Sulaimon, AIP Conf. Proc. 1774, 040004 (2016).CrossRefGoogle Scholar
  25. 25.
    Y. Beldengrün, J. Aragon, S.F. Prazeres, G. Montalvo, J. Miras, and J. Esquena, Langmuir 34, 9731 (2018).CrossRefGoogle Scholar
  26. 26.
    K.R. Stevens, N.J. Einerson, J.A. Burmania, and W.J. Kao, J. Biomater. Sci. Polym. Ed. 13, 1353 (2002).CrossRefGoogle Scholar
  27. 27.
    J.P. Tardivo, A. Del Giglio, C.S. de Oliveira, D.S. Gabrielli, H.C. Junqueira, D.B. Tada, D. Severino, R. de Fátima Turchiello, and M.S. Baptista, Photodiagn. Photodyn. Ther. 2, 175 (2005).CrossRefGoogle Scholar
  28. 28.
    J.A. Carvalho, A.S. Abreu, V.T.P. Ferreira, E.P. Gonçalves, A.C. Tedesco, J.G. Pinto, J. Ferreira-Strixino, M. Beltrame Junior, and A.R. Simioni, J. Biomater. Sci. Polym. Ed. 29, 1287 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesBahçeşehir UniversityIstanbulTurkey
  2. 2.Chemical and Biological EngineeringKoç UniversityIstanbulTurkey

Personalised recommendations