pp 1–8 | Cite as

Investigating Mg Biocorrosion In Vitro: Lessons Learned and Recommendations

  • Sean JohnstonEmail author
  • Zhiming Shi
  • Jeffrey Venezuela
  • Cuie Wen
  • Matthew S. Dargusch
  • Andrej AtrensEmail author
Characterization of Biodegradable Medical Materials


Magnesium (Mg) alloys are achieving good clinical success in applications as temporary biodegradable medical implants. However, the study of the corrosion in medical environments (biocorrosion) is still ongoing. Much of this study is conducted via laboratory (i.e., in vitro) immersion tests, which can be challenging. We have outlined and updated a range of recommendations on the in vitro biocorrosion assessment of Mg alloys, based on our experience in the field and the lessons learned through years of experiments. We hope these recommendations will help to improve future biocorrosion testing and provide insight for both researchers with experience in this field and those seeking to enter it.



This work was supported by the Australian Federal Government through an Australian Government Research Training Program Scholarship. The authors acknowledge the Australian Research Council (ARC) (Grant Nos. LP150100950, IH150100024, and DP170102557). M.S.D. and S.J. acknowledge the support of the ARC Research Hub for Advanced Manufacturing of Medical Devices. The staff of the University of Queensland Biological Resourced (UQBR) Department, in particular Mrs. Kym French, are also gratefully acknowledged for their assistance and expertise in animal handling and care. The National Imaging Facility at the Centre for Advanced Imaging (CAI) is acknowledged for their assistance and expertise with the imaging conducted in this study.


  1. 1.
    Y. Zheng, X. Gu, and F. Witte, Mater. Sci. Eng. R Rep. 77, 1 (2014).CrossRefGoogle Scholar
  2. 2.
    A. Atrens, G.L. Song, M. Liu, Z. Shi, F. Cao, and M.S. Dargusch, Adv. Eng. Mater. 17, 400 (2015).CrossRefGoogle Scholar
  3. 3.
    M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).CrossRefGoogle Scholar
  4. 4.
    A. Atrens, S. Johnston, Z. Shi, and M.S. Dargusch, Scr. Mater. 154, 92 (2018).CrossRefGoogle Scholar
  5. 5.
    Y. Ding, C. Wen, P. Hodgson, and Y. Li, J. Mater. Chem. B 2, 1912 (2014).CrossRefGoogle Scholar
  6. 6.
    N. Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar, M. Koç, and J. Mag, Alloys 6, 7 (2018).Google Scholar
  7. 7.
    C. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, Scr. Mater. 45, 1147 (2001).CrossRefGoogle Scholar
  8. 8.
    Y. Chen, W. Zhang, M.F. Maitz, M. Chen, H. Zhang, J. Mao, Y. Zhao, N. Huang, and G. Wan, Corros. Sci. 111, 541 (2016).CrossRefGoogle Scholar
  9. 9.
    J.-M. Seitz, A. Lucas, and M. Kirschner, JOM 68, 1 (2016).CrossRefGoogle Scholar
  10. 10.
    M. Haude, R. Erbel, P. Erne, S. Verheye, P. Vermeersch, H. Degen, D. Boese, R. Waksman, N. Weissman, and F. Prati, J. Am. Coll. Cardiol. 64, B182 (2014).CrossRefGoogle Scholar
  11. 11.
    M. Haude, H. Ince, S. Kische, A. Abizaid, R. Tolg, P.A. Lemos, N.M. van Mieghem, S. Verheye, C. von Birgelen, E.H. Christiansen, E. Barbato, H.M. Garcia-Garcia, and R. Waksman, Catheter Cardiovasc. Interv. 92, E502 (2018).CrossRefGoogle Scholar
  12. 12.
    C. Plaass, C. von Falck, S. Ettinger, L. Sonnow, F. Calderone, A. Weizbauer, J. Reifenrath, L. Claassen, H. Waizy, K. Daniilidis, J. Orthop. Sci. 67 (2017).Google Scholar
  13. 13.
    A. Atrens, M. Liu, and N.I.Z. Abidin, Mater. Sci. Eng. B 176, 1609 (2011).CrossRefGoogle Scholar
  14. 14.
    T. Kraus, S.F. Fischerauer, A.C. Hänzi, P.J. Uggowitzer, J.F. Löffler, and A.M. Weinberg, Acta Biomater. 8, 1230 (2012).CrossRefGoogle Scholar
  15. 15.
    S. Johnston, M. Dargusch, and A. Atrens, Sci. China Mater. 61, 475 (2018).CrossRefGoogle Scholar
  16. 16.
    N. Kirkland, N. Birbilis, and M. Staiger, Acta Biomater. 8, 925 (2012).CrossRefGoogle Scholar
  17. 17.
    F. Witte, J. Fischer, J. Nellesen, H.-A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen, Biomaterials 27, 1013 (2006).CrossRefGoogle Scholar
  18. 18.
    ASTM, G 31-72, ASTM Annual Book of Standards, (2004).Google Scholar
  19. 19.
    G.L. Song and A. Atrens, Adv. Eng. Mater. 1, 11 (1999).CrossRefGoogle Scholar
  20. 20.
    A. Atrens, G.-L. Song, F. Cao, Z. Shi, and P.K. Bowen, J. Magn. Alloys 1, 177 (2013).CrossRefGoogle Scholar
  21. 21.
    G. Song and A. Atrens, Adv. Eng. Mater. 5, 837 (2003).CrossRefGoogle Scholar
  22. 22.
    M. Liu, S. Zanna, H. Ardelean, I. Frateur, P. Schmutz, G. Song, A. Atrens, and P. Marcus, Corros. Sci. 51, 1115 (2009).CrossRefGoogle Scholar
  23. 23.
    N.I. Zainal Abidin, B. Rolfe, H. Owen, J. Malisano, D. Martin, J. Hofstetter, P.J. Uggowitzer, and A. Atrens, Corros. Sci. 75, 354 (2013).CrossRefGoogle Scholar
  24. 24.
    S. Johnston, Z. Shi, and A. Atrens, Corros. Sci. 101, 182–192 (2015).CrossRefGoogle Scholar
  25. 25.
    A. Atrens, G. Song, Z. Shi, A. Soltan, S. Johnston, M. Dargusch, Reference module in chemistry, molecular science and chemical engineer. in K Wandel ed Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Elsevier, vol. 6, p. 515 (2018).Google Scholar
  26. 26.
    M. Staiger, F. Feyerabend, R. Willumeit, C. Sfeir, Y. Zheng, S. Virtanen, W. Müeller, A. Atrens, M. Peuster, and P. Kumta, Mater. Sci. Eng. B 176, 1596 (2011).CrossRefGoogle Scholar
  27. 27.
    J. Walker, S. Shadanbaz, N.T. Kirkland, E. Stace, T. Woodfield, M.P. Staiger, and G.J. Dias, J. Biomed. Mater. Res. B Appl. Biomater. 100, 1134 (2012).CrossRefGoogle Scholar
  28. 28.
    A. Witecka, A. Bogucka, A. Yamamoto, K. Máthis, T. Krajňák, J. Jaroszewicz, and W. Święszkowski, Mater. Sci. Eng. C 65, 59 (2016).CrossRefGoogle Scholar
  29. 29.
    N. Fogh-Andersen, B.M. Altura, B.T. Altura, and O. Siggaard-Andersen, Clin. Chem. 41, 1522 (1995).Google Scholar
  30. 30.
    A. Bretag, Life Sci. 8, m319 (1969).CrossRefGoogle Scholar
  31. 31.
    S. Johnston, Z. Shi, M.S. Dargusch, and A. Atrens, Corros. Sci. 108, 66 (2016).CrossRefGoogle Scholar
  32. 32.
    S. Johnston, Z. Shi, C. Hoe, P.J. Uggowitzer, M. Cihova, J.F. Löffler, M.S. Dargusch, and A. Atrens, J. Biomed. Mater. Res. B Appl. Biomater. 106B, 1907 (2018).CrossRefGoogle Scholar
  33. 33.
    I. Marco, A. Myrissa, E. Martinelli, F. Feyerabend, R. Willumeit-Römer, A. Weinberg, and O. Van der Biest, Eur. Cells Mater. 33, 90 (2017).CrossRefGoogle Scholar
  34. 34.
    A. Yamamoto and S. Hiromoto, Mater. Sci. Eng. C 29, 1559 (2009).CrossRefGoogle Scholar
  35. 35.
    I. Edelman and J. Leibman, Am. J. Med. 27, 256 (1959).CrossRefGoogle Scholar
  36. 36.
    Y. Liu, S. Zheng, N. Li, H. Guo, Y. Zheng, and J. Peng, Sci. Rep. 7, 40184 (2017).CrossRefGoogle Scholar
  37. 37.
    J.Y. Lock, E. Wyatt, S. Upadhyayula, A. Whall, V. Nuñez, V.I. Vullev, and H. Liu, J. Biomed. Mater. Res. A 102, 781 (2014).CrossRefGoogle Scholar
  38. 38.
    T. Hartung, M. Balls, C. Bardouille, O. Blanck, S. Coecke, G. Gstraunthaler, and D. Lewis, ATLA 30, 407–414 (2002).Google Scholar
  39. 39.
    M.C. Phelan, Cur. Prot. Neurosci. 38, 19 (2007).Google Scholar
  40. 40.
    R.I. Freshney, Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications (New York: Wiley, 2015).Google Scholar
  41. 41.
    I. Marco, F. Feyerabend, R. Willumeit-Römer, and O. Van der Biest, Mater. Sci. Eng. C 35, 676 (2016).Google Scholar
  42. 42.
    H.-L. Chan, P.R. Gaffney, M.D. Waterfield, H. Anderle, H.P. Matthiessen, H.-P. Schwarz, P.L. Turecek, and J.F. Timms, FEBS Lett. 580, 3229 (2006).CrossRefGoogle Scholar
  43. 43.
    G. Song, A. Atrens, and D. StJohn, Magn. Technol. 2001, 254 (2001).Google Scholar
  44. 44.
    J. Hofstetter, E. Martinelli, A.M. Weinberg, M. Becker, B. Mingler, P.J. Uggowitzer, and J.F. Löffler, Corros. Sci. 91, 29 (2015).CrossRefGoogle Scholar
  45. 45.
    A. Atrens, G. Song, Z. Shi, A. Soltan, S. Johnston, and M. Dargusch, Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Vol. 515 (Amsterdam: Elsevier, 2017).Google Scholar
  46. 46.
    N.I. Zainal Abidin, A.D. Atrens, D. Martin, and A. Atrens, Corros. Sci. 53, 3542 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Materials Engineering Division, School of Mechanical and Mining EngineeringThe University of QueenslandBrisbaneAustralia
  2. 2.Centre for Advanced Materials Processing and Manufacturing (AMPAM)The University of QueenslandBrisbaneAustralia
  3. 3.School of EngineeringRoyal Melbourne Institute of Technology (RMIT)MelbourneAustralia

Personalised recommendations