Advertisement

JOM

pp 1–7 | Cite as

Thermal Deformation Behavior and Processing Maps of As-Homogenized Mg-5.8 Zn-0.5 Zr-1.0 Yb Alloy

  • Lu LiEmail author
  • Hao Li
  • Wei Jiang
  • Zhiyuan Pan
  • Yu Wang
  • Tao Wang
Aluminum and Magnesium: High Strength Alloys for Automotive and Transportation Applications
  • 94 Downloads

Abstract

Isothermal compression tests at temperatures of 250–400°C and strain rates of 0.001–1 s−1 were performed in a Gleeble-1500 thermal simulator to investigate the hot deformation behavior of as-homogenized Mg-5.8 Zn-0.5 Zr-1.0 Yb alloy. The Arrhenius-type constitutive equation and hot processing maps were established based on these experiments. Two dynamic recrystallized (DRX) domains were identified as (1) 280–350°C and 0.15–1 s−1; (2) 330–400°C and 0.001–0.09 s−1. The DRX mechanisms of the above-mentioned two domains and the instability patterns of the unstable regions were analyzed by optical microscopy and electron backscatter diffraction. The results provide a fundamental insight into the processing design, microstructural evolution, and property control of the newly developed Mg-Zn-Zr-Yb alloy.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51605392).

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

11837_2018_3309_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1267 kb)

References

  1. 1.
    C.J. Bettles and M.A. Gibson, JOM J. Min. Metals Mater. Soc. 57, 46 (2005).CrossRefGoogle Scholar
  2. 2.
    W.B. Yu, Z.Y. Liu, H. He, N.P. Cheng, and X.L. Li, Mater. Sci. Eng. A 478, 101 (2008).CrossRefGoogle Scholar
  3. 3.
    D.P. Zhang, Q. Yang, D.D. Zhang, Q. Sui, X. Qiu, H. Li, K. Guan, H. Zhou, and J. Meng, J. Alloy. Compd. 726, 295 (2017).CrossRefGoogle Scholar
  4. 4.
    C.Y. Wang, X.J. Wang, H. Chang, K. Wu, and M.Y. Zheng, Mater. Sci. Eng. A 464, 52 (2007).CrossRefGoogle Scholar
  5. 5.
    Z.J. Wang, X.D. Fu, J. Zhu, L. Zhou, and H.B. Wang, J. Mater. Eng. 45, 102 (2017).CrossRefGoogle Scholar
  6. 6.
    X.S. Xia, Q. Chen, S.H. Huang, J. Lin, C.K. Hu, and Z.D. Zhao, J. Alloy. Compd. 644, 308 (2015).CrossRefGoogle Scholar
  7. 7.
    H. Yu, Y.M. Kim, B.S. You, H.S. Yu, and S.H. Park, Mater. Sci. Eng. A 559, 798 (2013).CrossRefGoogle Scholar
  8. 8.
    H. Yu, Y.M. Kim, H.S. Yu, B.S. You, and G.H. Min, Acta Metall. Sin. 48, 1123 (2012).Google Scholar
  9. 9.
    C.M. Sellars and W.J. Mctegart, Acta Metall. Sin. 14, 1136 (1966).CrossRefGoogle Scholar
  10. 10.
    Y.J. Qin, Q.L. Pan, Y.B. He, W.B. Li, X.Y. Liu, and X. Fan, Acta Metall. Sin. 45, 887 (2009).Google Scholar
  11. 11.
    L. Li, W. Jiang, P.T. Guo, W.B. Yu, F. Wang, and Z.Y. Pan, Mater. Res. Ibero Am. J. Mater. 20, 1063 (2017).Google Scholar
  12. 12.
    Y. Wang, Y. Zhang, X. Zeng, and W. Ding, J. Mater. Sci. 41, 3603 (2006).CrossRefGoogle Scholar
  13. 13.
    S. Anbu Selvan and S. Ramanathan, Trans. Nonferrous Metals Soc. 21, 257 (2011).CrossRefGoogle Scholar
  14. 14.
    T. Al-Samman, K.D. Molodov, D.A. Molodov, G. Gottstein, and S. Suwas, Acta Mater. 60, 537 (2012).CrossRefGoogle Scholar
  15. 15.
    D.G. Cram, H.S. Zurob, Y.J.M. Brechet, and C.R. Hutchinson, Acta Mater. 57, 5218 (2009).CrossRefGoogle Scholar
  16. 16.
    C. Zener and J.H. Hollomon, J. Appl. Phys. 15, 22 (1944).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Faculty of Materials and EnergySouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations