Advertisement

JOM

pp 1–7 | Cite as

Effects of Additives on Alumina Preparation from Aluminum Chloride Solution by Electrolytic Transformation

  • Xiu-Xiu Han
  • Ting-An ZhangEmail author
  • Guo-Zhi Lv
  • Xi-Juan Pan
  • Da-Xue Fu
Technical Article
  • 9 Downloads

Abstract

A new electrotransformation process based on bubbling CO2 into the electrolyte in an electrolytic process to cause precipitation of aluminum salt is proposed herein to solve problems such as the high energy consumption in the process of alumina extraction by acid leaching. The effects of different additives in this electrotransformation process applied to aluminum chloride solution and the resulting roasting products were studied. When using different additives (HCl, Na2CO3, and NaHCO3) at an initial concentration of 10 g/L, the solution pH value and solution temperature gradually increased with increasing electrotransformation time, and the final pH value approached 3.2. The roasting products were all sheet alumina with cubic crystal structure. Use of all the additives refined the granularity of the alumina product, improved the solution conductivity, and increased the chlorine content in the alumina product. Addition of HCl improved the recovery rate of Al, but use of the additives Na2CO3 and NaHCO3 greatly reduced the recovery rate of Al.

Notes

Acknowledgements

This work was financially funded by the National Natural Science Foundation of China (Nos. U1710257, U1202274, and U51874078), the Science and Technology Research Projects of Liaoning Education Department (No. L2014096), and the State Key Laboratory of Pressure Hydrometallurgical Technology of Associated Nonferrous Metal Resources (YY2016006). The authors would also like to acknowledge the valuable suggestions and guidance of Prof. Liu Yan, Prof. Zhihe Dou, and Prof. Liping Niu regarding the experiments and this paper.

References

  1. 1.
    L.X. Sun, Light Met. 1, 1 (2015).Google Scholar
  2. 2.
    Y. Zhu and Y.B. Huo, Chin. J. Nonferrous Met. 7, 50 (2016).Google Scholar
  3. 3.
    J.M. Sun, B.J. Wang, and Z.J. Zhang, Light Met. 10, 1 (2012).Google Scholar
  4. 4.
    S.Y. Gao, H.B. She, J.M. Yang, and L. Tang, Light Met. 6, 5 (2016).Google Scholar
  5. 5.
    X.D. Mo, World J. Nonferrous Met. 10, 68 (2013).Google Scholar
  6. 6.
    Y. Zhu, Chin. J. Nonferrous Met. 2, 64 (2006).Google Scholar
  7. 7.
    Y.W. Wang, L.T. Song, S.H. Guo, and J.Z. Chi, Coal Eng. 45, 112 (2013).Google Scholar
  8. 8.
    Z.T. Yao, M.S. Xia, P.K. Sarker, and T. Chen, Fuel 120, 74 (2014).CrossRefGoogle Scholar
  9. 9.
    S.P. Barik, K.H. Park, P.K. Parhi, J.T. Park, and C.W. Nam, Sep. Purif. Technol. 101, 85 (2012).CrossRefGoogle Scholar
  10. 10.
    Y. Guo, H. Lv, X. Yang, and F. Cheng, Sep. Purif. Technol. 151, 177 (2015).CrossRefGoogle Scholar
  11. 11.
    W.Q. Xu, Y. Yan, X.L. Pan, and G.F. Tu, Prot. Util. Miner. Resour. 1, 108 (2017).Google Scholar
  12. 12.
    D. Xu, H. Li, W. Bao, and C. Wang, Hydrometallurgy 165, 336 (2016).CrossRefGoogle Scholar
  13. 13.
    S. Dai, L. Zhao, S. Peng, C. Chou, X. Wang, Y. Zhang, D. Li, and Y. Sun, Int. J. Coal Geol. 81, 320 (2010).CrossRefGoogle Scholar
  14. 14.
    Y.S. Zhang and W. Zhang, Multipurp. Util. Fly Ash 3, 20 (2010).Google Scholar
  15. 15.
    F. Lu, Nonferrous Min. Metall. 24, 25 (2008).Google Scholar
  16. 16.
    Y. Sun and H.B. Li, Environ. Dev. 5, 47 (2013).Google Scholar
  17. 17.
    X.X. Jiang, Nonferrous Met. Eng. 7, 30 (2017).CrossRefGoogle Scholar
  18. 18.
    Z.T. Yao, X.S. Ji, P.K. Sarker, J.H. Tang, L.Q. Ge, M.S. Xia, and Y.Q. Xi, Earth Sci. Rev. 141, 105 (2015).CrossRefGoogle Scholar
  19. 19.
    S.H. Guo and Z. Yang, Chin. J. Nonferrous Met. 19, 31 (2013).Google Scholar
  20. 20.
    H.Q. Li, D.H. Xu, C.Y. Wang, J.B. Hui, W.J. Bao, and Z.H. Sun, Light Met. 12, 5 (2016).Google Scholar
  21. 21.
    K.P. Wu and B. Chin, Metal 6, 14 (2009).Google Scholar
  22. 22.
    J.D. Wang, Y.C. Zhai, and X.Y. Shen, Light Met. 6, 14 (2009).Google Scholar
  23. 23.
    Q.C. Yang, S.H. Ma, H. Xie, R. Zhang, and S.L. Zheng, Multipurp. Util. Miner. Resour. 3, 3 (2012).Google Scholar
  24. 24.
    H.C. Park, Y.J. Park, and R. Stevens, Mater. Sci. Eng. A 367, 166 (2004).CrossRefGoogle Scholar
  25. 25.
    L.S. Li, Y.C. Zhai, J.G. Qin, Y. Wu, and Y.Y. Liu, J. Chem. Ind. Eng. 9, 2189 (2006).Google Scholar
  26. 26.
    A. Seidel and Y. Zimmels, Chem. Eng. Sci. 53, 3835 (1998).CrossRefGoogle Scholar
  27. 27.
    A. Shemi, R.N. Mpana, S. Ndlovu, L.D. van Dyk, V. Sibanda, and L. Seepe, Miner. Eng. 34, 30 (2012).CrossRefGoogle Scholar
  28. 28.
    G.H. Bai, X.G. Wang, J.P. Guo, B. Shen, and W. Teng, Coal Sci. Technol. 9, 106 (2008).Google Scholar
  29. 29.
    C. Wu, H. Yu, and H. Zhang, Trans. Nonferrous Met. Soc. 22, 2282 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Xiu-Xiu Han
    • 1
    • 2
  • Ting-An Zhang
    • 1
    • 2
    Email author
  • Guo-Zhi Lv
    • 1
    • 2
  • Xi-Juan Pan
    • 1
    • 2
  • Da-Xue Fu
    • 1
    • 2
  1. 1.School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of EducationShenyangChina

Personalised recommendations