Advertisement

JOM

pp 1–9 | Cite as

Anisotropic Deformation Behavior and Forming Limit of Hot-Rolled Al/Mg/Al Three-Layered Composite Sheets

  • Xiao-Lei Cui
  • Peng LinEmail author
  • Yan-Yan Ma
  • Chen-Kan Yan
  • Li-Chen Li
  • Cheng-Zhong Chi
  • Gang LiuEmail author
Aluminum and Magnesium: High Strength Alloys for Automotive and Transportation Applications

Abstract

The anisotropic deformation behavior and forming limit of hot-rolled Al/Mg/Al three-layered composite sheets have been investigated in detail. Uniaxial tensile tests were conducted on composite sheets at 0°, 45°, and 90° to the rolling direction. The results show that the properties of the hot-rolled 5052/AZ31/5052 three-layered composite sheet with fine grain distribution and diffusion layer of 18.71 μm were anisotropic and showed temperature dependence. The 0° direction showed the highest n value and the 90° direction the lowest. The highest Lankford parameter was found in the 45° direction, with the maximum \( \bar{r} \) value and minimum absolute value of \( \Delta r \) at 230°C. Moreover, hemispherical punch tests revealed that the composite sheet exhibited better formability at 230°C than 170°C, especially in the biaxial stress state. In the equibiaxial tensile stress state, significant anisotropy of the thickness distribution and different fracture appearance were also observed.

Notes

Acknowledgements

The study presented herein is financially supported by the State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology (AWJ-17M-04) and National Natural Science Foundation of China (Grant No. 51505323). The authors wish to express their gratitude for this funding.

Supplementary material

11837_2018_3303_MOESM1_ESM.pdf (267 kb)
Supplementary material 1 (PDF 267 kb)

References

  1. 1.
    P.K. Mallick, Woodhead Publishing Series in Composites Science and Engineering (Cambridge: Woodhead Publishing, 2010), pp. 1–32.Google Scholar
  2. 2.
    H. Sun, C. Li, and W. Fang, J. Mater. Process. Technol. 229, 633 (2016).CrossRefGoogle Scholar
  3. 3.
    S.-J. Kim, C. Lee, J. Koo, J. Lee, Y.-S. Lee, and D. Kim, Mater. Sci. Eng. A 724, 156 (2018).CrossRefGoogle Scholar
  4. 4.
    B.S. Padekar, V.S. Raja, R.K.S. Raman, and P. Lyon, Mater. Sci. Eng. A 583, 169 (2013).CrossRefGoogle Scholar
  5. 5.
    Y.B. Yan, Z.W. Zhang, W. Shen, J.H. Wang, L.K. Zhang, and B.A. Chin, Mater. Sci. Eng. A 527, 2241 (2010).CrossRefGoogle Scholar
  6. 6.
    Y. Wang, G. Luo, J. Zhang, Q. Shen, and L. Zhang, Mater. Sci. Eng. A 559, 868 (2013).CrossRefGoogle Scholar
  7. 7.
    X.P. Zhang, T.H. Yang, S. Castagne, and J.T. Wang, Mater. Sci. Eng. A 528, 1954 (2011).CrossRefGoogle Scholar
  8. 8.
    H. Chang, M.Y. Zheng, W.M. Gan, K. Wu, E. Maawad, and H.G. Brokmeier, Scr. Mater. 61, 717 (2009).CrossRefGoogle Scholar
  9. 9.
    B. Zhu, W. Liang, and X. Li, Mater. Sci. Eng. A 528, 6584 (2011).CrossRefGoogle Scholar
  10. 10.
    H. Matsumoto, S. Watanabe, and S. Hanada, J. Mater. Process. Technol. 169, 9 (2005).CrossRefGoogle Scholar
  11. 11.
    M.C. Chen, H.C. Hsieh, and W. Wu, J. Alloys Compd. 416, 169 (2006).CrossRefGoogle Scholar
  12. 12.
    H. Chang, M.Y. Zheng, C. Xu, G.D. Fan, H.G. Brokmeier, and K. Wu, Mater. Sci. Eng. A 543, 249 (2012).CrossRefGoogle Scholar
  13. 13.
    K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, and M.Y. Zheng, Mater. Sci. Eng. A 527, 3073 (2010).CrossRefGoogle Scholar
  14. 14.
    X.P. Zhang, S. Castagne, T.H. Yang, C.F. Gu, and J.T. Wang, Mater. Des. 32, 1152 (2011).CrossRefGoogle Scholar
  15. 15.
    J.H. Bae, A.K.P. Rao, K.H. Kim, and N.J. Kim, Scr. Mater. 64, 836 (2011).CrossRefGoogle Scholar
  16. 16.
    A. Macwan, X.Q. Jiang, C. Li, and D.L. Chen, Mater. Sci. Eng. A 587, 344 (2013).CrossRefGoogle Scholar
  17. 17.
    K.S. Lee, Y.S. Lee, and Y.N. Kwon, Mater. Sci. Eng. A 606, 205 (2014).CrossRefGoogle Scholar
  18. 18.
    C. Luo, W. Liang, Z. Chen, J. Zhang, C. Chi, and F. Yang, Mater. Charact. 84, 34 (2013).CrossRefGoogle Scholar
  19. 19.
    Z. Chen, D. Wang, X. Cao, W. Yang, and W. Wang, Mater. Sci. Eng. A 723, 97 (2018).CrossRefGoogle Scholar
  20. 20.
    C. Li, C. Chi, P. Lin, H. Zhang, and W. Liang, Mater. Des. 77, 15 (2015).CrossRefGoogle Scholar
  21. 21.
    R. Hawkins and J.C. Wright, J. Inst. Met. 99, 357 (1971).Google Scholar
  22. 22.
    M. Hiraiwa and K. Kondo, Bull. JSME 18, 442 (1975).CrossRefGoogle Scholar
  23. 23.
    S.L. Semiatin and H.R. Piehler, Metall. Trans. A 10, 1107 (1979).CrossRefGoogle Scholar
  24. 24.
    F. Yoshida and R. Hino, J. Mater. Process. Technol. 63, 66 (1997).CrossRefGoogle Scholar
  25. 25.
    A.J. Aghchai, M. Shakeri, and B. Mollaei-Dariani, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 222, 1131 (2008).CrossRefGoogle Scholar
  26. 26.
    A.J. Aghchai, M. Shakeri, and B. Mollaei-Dariani, Int. J. Adv. Manuf. Technol. 66, 809 (2013).CrossRefGoogle Scholar
  27. 27.
    H.D. Azodi, M. Safari, and R. Darabi, Trans. Indian Inst. Met. 70, 1841 (2017).CrossRefGoogle Scholar
  28. 28.
    H.D. Manesh and A.K. Taheri, J. Alloys Compd. 361, 138 (2003).CrossRefGoogle Scholar
  29. 29.
    S. Bagherzadeh, B. Mollaei-Dariani, and K. Malekzadeh, J. Mater. Process. Technol. 212, 1840 (2012).CrossRefGoogle Scholar
  30. 30.
    E. Karajibani, A. Fazli, and R. Hashemi, Int. J. Adv. Manuf. Technol. 80, 113 (2015).CrossRefGoogle Scholar
  31. 31.
    E. Afshin and M. Kadkhodayan, Mater. Des. 87, 25 (2015).CrossRefGoogle Scholar
  32. 32.
    E. Karajibani, R. Hashemi, and M. Sedighi, Int. J. Adv. Manuf. Technol. 90, 2713 (2017).CrossRefGoogle Scholar
  33. 33.
    M. Fan, J. Domblesky, K. Jin, L. Qin, S. Cui, X. Guo, N. Kim, and J. Tao, Mater. Des. 99, 535 (2016).CrossRefGoogle Scholar
  34. 34.
    H.-C. Tseng, J.-C. Hung, C. Hung, and M.-F. Lee, Int. J. Adv. Manuf. Technol. 54, 93 (2011).CrossRefGoogle Scholar
  35. 35.
    J. Liu, W. Liu, and W. Xue, Mater. Des. 46, 112 (2013).CrossRefGoogle Scholar
  36. 36.
    M. Harhash, R.R. Gilbert, S. Hartmann, and H. Palkowski, Compos. Struct. 202, 1308 (2018).CrossRefGoogle Scholar
  37. 37.
    A. Saadatfard, M. Gerdooei, and A.J. Aghchai, J. Sandw. Struct. Mater. (2018).  https://doi.org/10.1177/1099636218785208.CrossRefGoogle Scholar
  38. 38.
    R. Narayanasamy, R. Ravindran, K. Manonmani, and J. Satheesh, Mater. Des. 30, 1804 (2009).CrossRefGoogle Scholar
  39. 39.
    L. Wang, Q. Qiao, Y. Liu, and X. Song, J. Magnes. Alloys 1, 312 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina
  3. 3.Shanxi Key Laboratory of Advanced Magnesium-Based MaterialsTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations