Advertisement

JOM

pp 1–8 | Cite as

A Two-Stage Variable Pressure Diffusion Bonding for Manufacturing High-Precision Steel Hollow Structural Components

  • C. ZhangEmail author
  • H. Li
  • M. Li
Technical Article
  • 12 Downloads

Abstract

Conventional diffusion bonding is normally conducted under constant bonding pressure, resulting in obvious deformation of the joined component, thereby destroying the internal structures. To address this problem, this study proposed a two-stage variable pressure diffusion bonding to fabricate the high-precision steel hollow structural component. In the first stage, a short-time higher bonding pressure was applied to significantly improve the local micro-plastic deformation of the surface asperity; in the second stage, a lower bonding pressure was used to continuously act on the bonding process. The macroscopic deformation, interfacial characteristics and shear strength were analyzed. Results showed that a well-joined hollow structural component was manufactured, in which a high interfacial bonding ratio of 98.2%, shear strength of 818 MPa close to that of the base material and limited macroscopic deformation of 4.9% were achieved.

References

  1. 1.
    A. Hehr, J. Wenning, K. Terrani, S.S. Babu, and M. Norfolk, JOM 69, 485 (2016).CrossRefGoogle Scholar
  2. 2.
    M. Norfolk and H. Johnson, JOM 67, 655 (2015).CrossRefGoogle Scholar
  3. 3.
    Y. Li, H. Ola, C. Denis, W. Harvey, G. Haijun, and S. Brent, JOM 67, 608 (2015).CrossRefGoogle Scholar
  4. 4.
    Y.Y. Sun, S. Gulizia, C.H. Oh, C. Doblin, Y.F. Yang, and N. Qian, JOM 67, 564 (2015).CrossRefGoogle Scholar
  5. 5.
    T. Hirata and K. Higashi, JOM 62, 42 (2010).CrossRefGoogle Scholar
  6. 6.
    Y. Hovanski, P. Upadhyay, J. Carsley, T. Luzanski, B. Carlson, M. Eisenmenger, A. Soulami, D. Marshall, B. Landino, and S. Hartfield-Wunsch, JOM 67, 1045 (2015).CrossRefGoogle Scholar
  7. 7.
    Q. Pang, Z.L. Hu, X. Pan, and X.Q. Zuo, JOM 66, 2137 (2014).CrossRefGoogle Scholar
  8. 8.
    L.D. Hefti, JOM 62, 42 (2010).CrossRefGoogle Scholar
  9. 9.
    T.T. Zhang, W.X. Wang, J. Zhou, X.Q. Cao, Z.F. Yan, Y. Wei, and W. Zhang, JOM 70, 504 (2018).CrossRefGoogle Scholar
  10. 10.
    M. Hawgood, J. Hasier, and K. Ho, JOM 68, 3161 (2016).CrossRefGoogle Scholar
  11. 11.
    D. Verma, J. Singh, A.H. Varma, and V. Tomar, JOM 67, 1649 (2015).Google Scholar
  12. 12.
    B.K. Paul, S. Bose, and D. Palo, Precis. Eng. 34, 554 (2010).CrossRefGoogle Scholar
  13. 13.
    T. Takeda, K. Kunitomi, T. Horie, and K. Iwata, Nucl. Eng. Des. 168, 11 (1997).CrossRefGoogle Scholar
  14. 14.
    Y. Miura, J. Hirokawa, M. Ando, Y. Shibuya, and G. Yoshida, IEEE Trans. Antennas Propag. 59, 2844 (2011).CrossRefGoogle Scholar
  15. 15.
    F.S. Zhang, J.T. Xiong, N.N. Yang, and C.S. Cheng, J. Lanzhou Univ. Technol. 30, 72 (2004).Google Scholar
  16. 16.
    W. Hu, D. Ponge, and G. Gottstein, Mater. Sci. Eng. A 190, 223 (1995).CrossRefGoogle Scholar
  17. 17.
    M. Martinez, M. Lefros, T. Signamarcheix, L. Bally, S. Verrun, L. Di Cioccio, and C. Deguet, Thin Solid Films 530, 96 (2013).CrossRefGoogle Scholar
  18. 18.
    Y. Huang, N. Ridley, F.J. Humphreys, and J.Z. Cui, Mater. Sci. Eng. A 266, 295 (1999).CrossRefGoogle Scholar
  19. 19.
    C. Zhang, H. Li, and M.Q. Li, Sci. Technol. Weld. Join. 20, 115 (2015).CrossRefGoogle Scholar
  20. 20.
    Y.D. Chu, J.S. Li, L. Zhu, B. Tang, and H.C. Kou, Intermetallics 90, 119 (2017).CrossRefGoogle Scholar
  21. 21.
    B. Tang, X.S. Qi, H.C. Kou, J.S. Li, and S. Milenkovic, Adv. Eng. Mater. 18, 657 (2016).CrossRefGoogle Scholar
  22. 22.
    G. Garmong, N.E. Paton, and A.S. Argon, Metall. Mater. Trans. A 6, 1268 (1975).Google Scholar
  23. 23.
    B. Derby and E.R. Wallach, Met. Sci. 16, 49 (1982).CrossRefGoogle Scholar
  24. 24.
    B. Derby and E.R. Wallach, Met. Sci. 18, 427 (1984).CrossRefGoogle Scholar
  25. 25.
    J. Pilling, D.W. Livesey, and J.B. Hawkyard, Met. Sci. 18, 117 (1984).CrossRefGoogle Scholar
  26. 26.
    J. Pilling, Mater. Sci. Eng. A 100, 137 (1988).CrossRefGoogle Scholar
  27. 27.
    Z.X. Guo and N. Ridley, Mater. Sci. Technol. 3, 945 (1987).CrossRefGoogle Scholar
  28. 28.
    A. Hill and E.R. Wallach, Acta Metall. 37, 2425 (1989).CrossRefGoogle Scholar
  29. 29.
    S. Noh, R. Kasada, and A. Kimura, Acta Mater. 59, 3196 (2011).CrossRefGoogle Scholar
  30. 30.
    H.J. Liu and X.L. Feng, Trans. Nonferrous Met. Soc. China 21, 58 (2011).CrossRefGoogle Scholar
  31. 31.
    G. Sharma and D.K. Dwivedi, Mater. Sci. Eng. A 696, 393 (2017).CrossRefGoogle Scholar
  32. 32.
    K. Pongmorakot, S. Nambu, Y. Shibuta, and T. Koseki, Sci. Technol. Weld. Join. 22, 1 (2017).CrossRefGoogle Scholar
  33. 33.
    S. Afshan, D. Balint, D. Farrugia, and J. Lin, Mater. Sci. Eng. A 586, 25 (2013).CrossRefGoogle Scholar
  34. 34.
    S. Jiang, Y. Jia, Z. Lu, C. Shi, and K. Zhang, JMEPEG 26, 4265 (2017).CrossRefGoogle Scholar
  35. 35.
    S. Chen, F. Ke, M. Zhou, and Y. Bai, Acta Mater. 55, 3169 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.Department of Mechanical Engineering, LaMCoSUniversite de Lyon/INSA Lyon/CNRSVilleurbanneFrance

Personalised recommendations