, Volume 71, Issue 2, pp 644–650 | Cite as

Optical and Electrical Properties of CdS Material in a Microplasma Cell Under IR Stimulation

  • H. Hilal KurtEmail author
  • E. Tanrıverdi
  • B. G. Salamov
Energy Materials


CdS has a wide range of applications for explorations of its optical and electrical behaviors. A microplasma cell with a CdS electrode has been constructed. The measurements on discharge currents under various gas pressures, interelectrode distances and excitation voltages have been studied theoretically and experimentally. The 2D electron densities under different parameter ranges along the gas discharge volume have been examined. The structural and optical features have been analyzed using scanning electron microscopy, atomic force spectroscopy and Fourier transform infrared spectroscopy for complementary information. Experimentally, as an additional optical test, CVC measurements have also been performed under IR stimulation to verify the infrared sensitivity of the sample. The CdS cathode sample has been damaged by the high energetic current value around 10−1 A following the plasma transition from the glow to the arc.


  1. 1.
    Y. Yu Peter and M. Cardona, Fundamentals of Semiconductors Physics and Materials Properties, 4th ed. (Berlin: Springer, 2010), p. 345.zbMATHGoogle Scholar
  2. 2.
    M. Urbańczyk, W. Jakubık, and E. Maciak, Mol. Quantum Acoust. 26, 895 (2005).Google Scholar
  3. 3.
    T. Peng, H. Yang, K. Dai, X. Pu, and K. Hirao, Chem. Phys. Lett. 379, 432 (2003).CrossRefGoogle Scholar
  4. 4.
    B.R. Kumar and S.R. Meher, IOSR J. Appl. Phys. 8, 47 (2016).CrossRefGoogle Scholar
  5. 5.
    A.F. Holleman, E. Wiberg, and N. Wiberg, Holleman–Wiberg—Lehrbuch der Anorganischen Chemie, chap Die Zinkgruppe, 101st ed. (Berlin: De Gruyter, 1995), p. 1375.Google Scholar
  6. 6.
    J. Frenzel, Structural, electronic and optical properties of cadmium sulfi deNanoparticles. Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (2007)Google Scholar
  7. 7.
    H. Kurt, E. Koc, and B.G. Salamov, IEEE Trans. Plasma Sci. 38, 137 (2010).CrossRefGoogle Scholar
  8. 8.
    H.Y. Kurt, A. Inalöz, and B.G. Salamov, Optoelectron. Adv. Mater. Rapid Commun. 4, 205 (2010).Google Scholar
  9. 9.
    B.G. Salamov and H.Y. Kurt, J. Phys. D Appl. Phys. 38, 682 (2005).CrossRefGoogle Scholar
  10. 10.
    Z. Nikitovic, A. Strinic, V. Samara, G. Malovic, and Z. Petrovic, Acta Chim. Slov. 52, 463 (2005).Google Scholar
  11. 11.
    H. Yasuda, L. Ledernez, F. Olcaytug, and G. Urban, Pure Appl. Chem. 80, 1883 (2008).CrossRefGoogle Scholar
  12. 12.
    E. Wagenaars, Plasma breakdown of low-pressure gas discharges. Thesis submitted for Technische Universiteit Eindhoven (2006)Google Scholar
  13. 13.
    H. Noori and A.H. Ranjbar, J. Appl. Phys. 112, 023301 (2012).CrossRefGoogle Scholar
  14. 14.
    D. Mariotti, J.A. McLaughlin, and P. Maguire, Plasma Sources Sci. Technol. 13, 207 (2014).CrossRefGoogle Scholar
  15. 15.
    S. Watanabe, T. Watanabe, K. Ito, N. Miyakawa, S. Ito, H. Hosono, and S. Mikoshiba, Sci. Technol. Adv. Mater. 12, 034410 (2011).CrossRefGoogle Scholar
  16. 16.
    Y.P. Raizer, Gas Discharge Physics (Berlin: Springer, 1997).Google Scholar
  17. 17.
    M.C. Penache, Study of high-pressure glow discharges generated by micro-structured electrode (MSE) arrays. Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich Physik der Johann Wolfgang Goethe Universität in Frankfurt am Main (2002)Google Scholar
  18. 18.
    G.J.M. Haagelaar and L.C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).CrossRefGoogle Scholar
  19. 19.
    V.E. Golant, A.P. Zhilinsky, and I.E. Sakharov, Fundamentals of Plasma Physics (New York: Wiley, 1980), p. 71.Google Scholar
  20. 20.
    M.E. Haim, M.E. Hammoutı, M. Atountı, H. Chateı, and M.E. Bojaddaını, Fluid Modelling of Plasma Discharge at Low Pressures, in 13ème Congrès de Mécanique 11–14 Avril 2017 (MAROC, Meknès, 2017)Google Scholar
  21. 21.
    Y. Sadiq, H.Y. Kurt, A.O. Albarzanji, S.D. Alekperov, and B.G. Salamov, Solid-State Electron. 53, 1009 (2009).CrossRefGoogle Scholar
  22. 22.
    B.G. Salamov, N.N. Lebedeva, H.Y. Kurt, V.I. Orbukh, and E.Y. Bobrova, J. Phys. D Appl. Phys. 39, 2732 (2006).CrossRefGoogle Scholar
  23. 23.
    H.H. Kurt and E. Tanrıverdi, J. Electron. Mater. 46, 4024 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • H. Hilal Kurt
    • 1
    Email author
  • E. Tanrıverdi
    • 1
  • B. G. Salamov
    • 1
    • 2
  1. 1.Department of Physics, Faculty of ScienceGazi UniversityTeknikokullar, AnkaraTurkey
  2. 2.Azerbaijan Academy of Science, Institute of PhysicsBakuAzerbaijan

Personalised recommendations