Advertisement

JOM

pp 1–10 | Cite as

Current Status of Titanium Recycling and Related Technologies

  • Osamu TakedaEmail author
  • Toru H. Okabe
Rare Metal Recovery from Secondary Resources
  • 78 Downloads

Abstract

The major resource for recycling Ti is currently in-house Ti scrap generated in smelting and fabrication processes instead of postconsumer Ti products, and the actual recycling rate including cascade recycling in the smelting and fabrication industry is high. The major impurities in Ti scrap are O and Fe. High-grade Ti scrap with low O and Fe concentrations is remelted to obtain Ti and its alloys. On the other hand, low-grade Ti scrap with high O and Fe concentrations is used as ferrotitanium for the steel industry. However, if demand for Ti drastically increases, the amount of low-grade Ti scrap generated would exceed the demand for ferrotitanium. Before this happens, technologies for anti-contamination or for efficient O and Fe removal must be developed for efficient utilization of Ti. Herein, the current status of Ti scrap generation and its recycling flow are reviewed. New developments in Ti recycling technology are also discussed.

Notes

Acknowledgements

The authors are grateful to Prof. Toshiyuki Obikawa and Prof. Akira Hashimoto of The University of Tokyo, Mr. Rob Henderson of Boeing Japan KK, Mr. Osamu Koike and Mr. Kazuhiro Kinoshita of the Japan Titanium Society, Mr. Kazuhiro Taki of Toho Technical Service Co. Ltd., Mr. Yuichi Ono of Toho Titanium Co. Ltd., Mr. Kotaro Watanabe of the Japan Association for Trade with Russia & New Independent States (NIS), and Associate Professor of Yuki Taninouchi of Kyoto University for valuable comments and suggestions. This research was partly funded by a Grant-in-Aid for Scientific Research (S) (KAKENHI Grant #26220910) by JSPS.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflict of interest.

References

  1. 1.
    Industrial Rare Metal, Annual Review 2017, (Tokyo, Japan: Arumu Publishing, 2017), pp. 70–75, 86. (in Japanese).Google Scholar
  2. 2.
    R.L. Rundnick, The Crust (Oxford, UK: Elsevier Pergamon, 2004), pp. 1–64.Google Scholar
  3. 3.
    F.H. Froes, Titanium: Physical Metallurgy Processing and Applications (ASM International, Materials Park, OH, 2015), pp. 9–14, 331.Google Scholar
  4. 4.
    Mineral resource material flow 2017 (Tokyo, Japan: Japan Oil, Gas, Metals National Corporation, 2017). http://mric.jogmec.go.jp/wp-content/ebook/201803/5ab321a5/material_flow2017.pdf. Accessed 1 Apr 2018.
  5. 5.
    W. Kroll, Trans. Electrochem. Soc. 78, 35 (1940).CrossRefGoogle Scholar
  6. 6.
    O. Takeda, T. Uda, and T.H. Okabe, Treatise on Process Metallurgy, vol. 3 (London, UK: Elsevier, 2013), Chap. 2.9, pp. 995−1069.Google Scholar
  7. 7.
    F. Habashi (ed.), Handbook of Extractive Metallurgy, vol. 2 (Weinheim, Germany: VCH VerlagsgesellschaftmbH, 1997), pp. 1129−1180.Google Scholar
  8. 8.
    Home page of Toho Titanium Co., Ltd. http://www.toho-titanium.co.jp. Accessed 1 Apr 2018.
  9. 9.
    Y. Marui, T. Kinoshita, and K. Takahashi, Honda R&D Tech. Rev. 14, 149 (2002).Google Scholar
  10. 10.
    T. Suzuki and T. Kaneko, The Latest Technological Trend of Rare Metals, (Tokyo, Japan: CMC Publishing, 2012), Chap. 6.4, pp. 117−127. (in Japanese).Google Scholar
  11. 11.
    Y. Taninouchi, Y. Hamanaka, and T.H. Okabe, Mater. Trans. 56, 1 (2015).CrossRefGoogle Scholar
  12. 12.
    Y. Taninouchi, Y. Hamanaka, and T.H. Okabe, Proceedings of Ti-2015: The 13th World Conference on Titanium, (August 16–20, 2015, San Diego, USA, 2015), pp. 165−170.Google Scholar
  13. 13.
    American Society for Testing and Materials, Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate, B26506b, (West Conshohocken, PA: ASTM International, 2006), Total 10 pages.Google Scholar
  14. 14.
    E. Roegner, Innovation in the Era of Delivery, Proceedings of Titanium USA 2016 (Sep. 25–28, 2016, Scottsdale, AZ, USA), Total 19 pages.Google Scholar
  15. 15.
    H. Hira, J. Jpn. Inst. Light Met. 65, 426 (2015).CrossRefGoogle Scholar
  16. 16.
    W. Leach, Titanium Demand and Trends in the Airframe Market, Proceedings of Titanium 2015 (Oct. 4–7, 2015, Orlando, FL, USA), Total 17 pages.Google Scholar
  17. 17.
    Provided by Mr. Kotaro Watanabe.Google Scholar
  18. 18.
    R. Duflos, Titanium Aerospace Demand & Integrated Supply Chain, Proceedings of TitaniumSA 2016 (Sep. 25–28, 2016, Scottsdale, AZ, USA), Total 14 pages.Google Scholar
  19. 19.
    Customs statistics in Japan, Ministry of Finance, Japan (December 2016).Google Scholar
  20. 20.
    Mineral Industry Surveys 2017 (Reston, VA: US Geological Survey, 2017).Google Scholar
  21. 21.
    Statistical Review 20122016 (Northglenn, CO: International Titanium Association, 2017).Google Scholar
  22. 22.
    T. Suzuki, Titanium Jpn. 57, 21 (2009).Google Scholar
  23. 23.
    T. Ishigami, Materia Jpn. 33, 55 (1994).CrossRefGoogle Scholar
  24. 24.
    K. Ono and S. Miyazaki, J. Jpn. Inst. Met. 49, 871 (1985).CrossRefGoogle Scholar
  25. 25.
    R.L. Fisher, US Patent No. 4923531A (1990).Google Scholar
  26. 26.
    R.L. Fisher, US Patent No. 5022935 (1991).Google Scholar
  27. 27.
    R.L. Fisher and S.R. Seagle, US Patent No. 5211775 A (1993).Google Scholar
  28. 28.
    R.L. Fisher and S.R. Seagle, DOSS, An Industrial Process for Removing Oxygen From Titanium Turnings Scrap, Titanium Science and Technology, ed. by F.H. Froes and I. Caplan. The Minerals, Metals & Materials Society, vol. 3 (Proceedings of the 7th World Conference on Titanium (1992), 1993), pp. 2265−2272.Google Scholar
  29. 29.
    T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono, Mater. Trans. JIM 32, 485 (1991).CrossRefGoogle Scholar
  30. 30.
    J.-M. Oh, B.-K. Lee, C.-Y. Suh, S.-W. Cho, and J.-W. Lim, Powder Metall. 55, 402 (2012).CrossRefGoogle Scholar
  31. 31.
    J.-M. Oh, H. Kwon, W. Kim, and J.-Won Lim, Thin Solid Films, 551, 98 (2014).Google Scholar
  32. 32.
    J.-M. Oh, I.-H. Choi, C.-Y. Suh, H. Kwon, J.-W. Lim, and K.-M. Roh, Met. Mater. Int. 22, 488 (2016).CrossRefGoogle Scholar
  33. 33.
    S.-J. Kim, J.-M. Oh, and J.-W. Lim, Met. Mater. Int. 22, 658 (2016).CrossRefGoogle Scholar
  34. 34.
    T.H. Okabe, R. Suzuki, T. Oishi, and K. Ono, Tetsu-to-Hagane 77, 93 (1991).CrossRefGoogle Scholar
  35. 35.
    T.H. Okabe, T. Oishi, and K. Ono, J. Alloys Compd. 184, 43 (1992).CrossRefGoogle Scholar
  36. 36.
    T.H. Okabe, T. Oishi, and K. Ono, Metall. Trans. B 23B, 583 (1992).CrossRefGoogle Scholar
  37. 37.
    Y. Xia, Z.Z. Fang, P. Sun, Y. Zhang, T. Zhang, and M. Free, J. Mater. Sci. 52, 4120 (2017).CrossRefGoogle Scholar
  38. 38.
    T.H. Okabe, M. Nakamura, T. Oishi, and K. Ono, Metall. Trans. B 24B, 449 (1993).CrossRefGoogle Scholar
  39. 39.
    M. Nakamura, T.H. Okabe, T. Oishi, and K. Ono, in Proc. Int. Symp. Molten Salt Chem. Technol., (1993), pp. 529−540.Google Scholar
  40. 40.
    Y. Taninouchi, Y. Hamanaka, and T.H. Okabe, Metall. Mater. Trans. B 47B, 3395 (2016).Google Scholar
  41. 41.
    T.H. Okabe, Y. Hamanaka, and Y. Taninouchi, Faraday Discuss. 190, 109 (2016).CrossRefGoogle Scholar
  42. 42.
    G.Z. Chen, D.J. Fray, and T.W. Farthing, Nature 407, 361 (2000).CrossRefGoogle Scholar
  43. 43.
    G.Z. Chen, D.J. Fray, and T.W. Farthing, Metall. Trans. B 32B, 1041 (2001).CrossRefGoogle Scholar
  44. 44.
    G.Z. Chen, D.J. Fray, and T.W. Farthing, US Patent No. 2004/0159559 A1 (2004).Google Scholar
  45. 45.
    D.J. Fray, JOM 53, 26 (2001).CrossRefGoogle Scholar
  46. 46.
    K.S. Mohandas and D.J. Fray, Trans. Indian Inst. Met. 57, 579 (2004).Google Scholar
  47. 47.
    P.K. Tripathy, M. Gauthier, and D.J. Fray, Metall. Trans. B 38B, 893 (2007).CrossRefGoogle Scholar
  48. 48.
    K. Ono and R.O. Suzuki, JOM 54, 59 (2002).CrossRefGoogle Scholar
  49. 49.
    R.O. Suzuki and S. Inoue, Metall. Trans. B 34B, 277 (2003).CrossRefGoogle Scholar
  50. 50.
    R.O. Suzuki, K. Ono, and K. Teranuma, Metall. Trans. B 34B, 287 (2003).CrossRefGoogle Scholar
  51. 51.
    R.O. Suzuki and S. Fukui, Mater. Trans. 45, 1665 (2004).CrossRefGoogle Scholar
  52. 52.
    R.O. Suzuki, J. Phys. Chem. Solids 66, 461 (2005).CrossRefGoogle Scholar
  53. 53.
    R.O. Suzuki, JOM 59, 68 (2007).CrossRefGoogle Scholar
  54. 54.
    Z.Z. Fang, S. Middlemas, J. Guo, and P. Fan, J. Am. Chem. Soc. 135, 18248 (2013).CrossRefGoogle Scholar
  55. 55.
    Y. Zhang, Z.Z. Fang, Y. Xia, Z. Huang, H. Lefler, T.Y. Zhang, P. Sun, M.L. Free, and J. Guo, Chem. Eng. J. 286, 517 (2016).CrossRefGoogle Scholar
  56. 56.
    Y. Zhang, Z.Z. Fang, P. Sun, T.Y. Zhang, Y. Xia, C.S. Zhou, and Z. Huang, J. Am. Chem. Soc. 138, 6916 (2016).CrossRefGoogle Scholar
  57. 57.
    Y. Zhang, Z.Z. Fang, Y. Xia, P. Sun, B.V. Devener, M. Free, H. Lefler, and S. Zheng, Chem. Eng. J. 308, 299 (2017).CrossRefGoogle Scholar
  58. 58.
    Y. Xia, Z.Z. Fan, Y. Zhang, H. Lefler, T. Zhang, P. Sun, and Z. Huang, Mater. Trans. 58, 355 (2017).CrossRefGoogle Scholar
  59. 59.
    T. Yahata, T. Ikeda, and M. Maeda, Metall. Trans. B 24B, 599 (1993).CrossRefGoogle Scholar
  60. 60.
    B. Rotmann, C. Lochbichler, and B. Friedrich, Proceedings of EMC 2011 (2011), Total 15 pages.Google Scholar
  61. 61.
    Y. Su, L. Wang, L. Luo, X. Jiang, J. Guo, and H. Fu, Int. J. Hydrogen Energy 34, 8958 (2009).CrossRefGoogle Scholar
  62. 62.
    J.-M. Oh, K.-M. Roh, and J.-W. Lim, Int. J. Hydrogen Energy 41, 23033 (2016).CrossRefGoogle Scholar
  63. 63.
    J. Reitz, C. Lochbichler, and B. Friedrich, Intermetallics 19, 762 (2011).CrossRefGoogle Scholar
  64. 64.
    M. Bartosinski, S. Hassan-Pour, B. Friedrich, S. Ratiev, and A. Ryabtsev, IOP Conf. Series: Mater. Sci. Eng., 143, 012009 (2016), Total 11 pages.Google Scholar
  65. 65.
    J.-M. Oh, K.-M. Roh, B.-K. Lee, C.-Y. Suh, W. Kim, H. Kwon, and J.-W. Lim, J. Alloys Compd. 593, 61 (2014).CrossRefGoogle Scholar
  66. 66.
    K.-M. Roh, C.-Y. Suh, J.-M. Oh, W. Kim, H. Kwon, and J.-W. Lim, Powder Technol. 253, 266 (2014).CrossRefGoogle Scholar
  67. 67.
    V.A. Liskovich, Yu.G. Olesov, V.S. Ustinov, A.N. Rubtsov, A.B. Suchkov, Y.N. Nazarova, and A.I. Boiko, \( Izvestii\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{a} \) Akademii nauk SSSR. Metally, No. 5, UDC 669.295.5’71′292.4, 233 (1969).Google Scholar
  68. 68.
    J.R. Nettle, D.H. Baxer Jr., and F.S. Wartman, United States Bureau of Mines, Report of Investigations 5315 (Washington, DC: USBM, 1957).Google Scholar
  69. 69.
    A.B. Suchkov, Z.A. Tubyshki, Z.I. Sokolova, and N.V. Zhukova, Russ. Metall. 6, 52 (1969).Google Scholar
  70. 70.
    S. Takeuchi and O. Watanabe, J. Jpn. Inst. Met. 28, 633 (1964).CrossRefGoogle Scholar
  71. 71.
    S. Takeuchi and O. Watanabe, J. Jpn. Inst. Met. 28, 728 (1964).CrossRefGoogle Scholar
  72. 72.
    Y. Hashimoto, K. Uriya, and R. Kono, Denki Kagaku 39, 516 (1971).Google Scholar
  73. 73.
    Y. Hashimoto, Denki Kagaku 39, 938 (1971).Google Scholar
  74. 74.
    Y. Hashimoto, Denki Kagaku 40, 39 (1972).Google Scholar
  75. 75.
    H. Miyazaki, Y. Yamakoshi, and Y. Shindo, Materia Jpn. 33, 51 (1994).CrossRefGoogle Scholar
  76. 76.
    R. Matsuoka and T.H. Okabe, Proceedings of the Symposium on Metallurgical Technology for Waste Minimization at the 2005 TMS Annual Meeting, (San Francisco, CA, 2005.2.13-17).Google Scholar
  77. 77.
    H. Zheng and T.H. Okabe, J. Alloys Compd. 461, 459 (2008).CrossRefGoogle Scholar
  78. 78.
    Y. Taninouchi, Y. Hamanaka, and T.H. Okabe, Mater. Trans. 57, 1309 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Institute of Industrial ScienceThe University of TokyoTokyoJapan

Personalised recommendations