, Volume 71, Issue 2, pp 567–584 | Cite as

A Review of Spark Plasma Sintering of Carbon Nanotubes Reinforced Titanium-Based Nanocomposites: Fabrication, Densification, and Mechanical Properties

  • Avwerosuoghene Moses OkoroEmail author
  • Senzeni Sipho Lephuthing
  • Samuel Ranti Oke
  • Oluwasegun Eso Falodun
  • Mary Ajimegoh Awotunde
  • Peter Apata Olubambi
Advanced Nanocomposite Materials: Structure-Property Relationships


The quest to consistently develop improved materials for direct application in automotive, aerospace, and other industries has led to the synthesis of titanium-based composites—with current research efforts being directed toward the utilization of carbon nanotubes (CNTs) as reinforcement. CNTs constitute an outstanding reinforcement for titanium-based matrixes, owing to their extraordinary physical, electrical, mechanical, and thermal properties. Powder metallurgy (PM) routes have been adjudged the most promising technique for synthesizing CNT-reinforced titanium. However, past reviews have highlighted various PM techniques, reinforcement efficiency, and effective methods for dispersing CNTs in metal matrixes. Among the various PM techniques, spark plasma sintering (SPS) has gained popularity in the synthesizing of titanium-based nanocomposites (TMNCs). Hence, this review focused on past works on the SPS of TMNCs reinforced with CNTs. The properties of CNTs, their fabrication method, their densification mechanism, and the mechanical properties of sintered TMNCs were discussed in detail.



The authors would like to extend their appreciation to the National Research Foundation (NRF) of South Africa as well as the Global Excellence and Stature (GES) of the University of Johannesburg, South Africa, for their financial support.

Conflict of interest

The authors declared that they have no conflict of interest.


  1. 1.
    S. Ranganath, J. Mater. Sci. 32, 1 (1997).Google Scholar
  2. 2.
    M.A. Lagos, I. Agote, G. Atxaga, O. Adarraga, and L. Pambaguian, Mater. Sci. Eng. A 655, 44 (2016).CrossRefGoogle Scholar
  3. 3.
    E. Neubauer, M. Kitzmantel, M. Hulman, and P. Angerer, Compos. Sci. Technol. 70, 2228 (2010).CrossRefGoogle Scholar
  4. 4.
    S.C. Tjong, Mater. Sci. Eng. Rep. 74, 281 (2013).CrossRefGoogle Scholar
  5. 5.
    A. Dorri Moghadam, E. Omrani, P.L. Menezes, and P.K. Rohatgi, Compos. B Eng. 77, 402 (2015).CrossRefGoogle Scholar
  6. 6.
    A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, Compos. A Appl. Sci. Manuf. 42, 234 (2011).CrossRefGoogle Scholar
  7. 7.
    A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, Compos. Sci. Technol. 70, 2237 (2010).CrossRefGoogle Scholar
  8. 8.
    T. Kuzumaki, K. Miyazawa, H. Ichinose, and K. Ito, J. Mater. Res. 13, 2445 (1998).CrossRefGoogle Scholar
  9. 9.
    K.T. Kim, S. Il Cha, S.H. Hong, and S.H. Hong, Mater. Sci. Eng. A 430, 27 (2006).CrossRefGoogle Scholar
  10. 10.
    A. Bhat, V.K. Balla, S. Bysakh, D. Basu, S. Bose, and A. Bandyopadhyay, Mater. Sci. Eng. A 528, 6727 (2011).CrossRefGoogle Scholar
  11. 11.
    S. Cho, K. Kikuchi, A. Kawasaki, H. Kwon, and Y. Kim, Nanotechnology 23, 315705 (2012).CrossRefGoogle Scholar
  12. 12.
    C.S. Goh, J. Wei, L.C. Lee, and M. Gupta, Mater. Sci. Eng. A 423, 153 (2006).CrossRefGoogle Scholar
  13. 13.
    S.Y. Liu, F.P. Gao, Q.Y. Zhang, X. Zhu, and W.Z. Li, Trans. Nonferrous Met. Soc. China (Engl. Ed.) 20, 1222 (2010).CrossRefGoogle Scholar
  14. 14.
    M. Paramsothy, S.F. Hassan, N. Srikanth, and M. Gupta, Compos. A Appl. Sci. Manuf. 40, 1490 (2009).CrossRefGoogle Scholar
  15. 15.
    N.S. Karthiselva and S.R. Bakshi, Mater. Sci. Eng. A 663, 38 (2016).CrossRefGoogle Scholar
  16. 16.
    K.S. Munir, Y. Li, D. Liang, M. Qian, W. Xu, and C. Wen, Mater. Des. 88, 138 (2015).CrossRefGoogle Scholar
  17. 17.
    A.D. Moghadam, B.F. Schultz, J.B. Ferguson, E. Omrani, P.K. Rohatgi, and N. Gupta, JOM 66, 872 (2014).CrossRefGoogle Scholar
  18. 18.
    M. Jurczyk and J. Jakubowicz, Bionanomateriały (Poznań: Wydawnictwo Politechniki Poznańskiej, 2008).Google Scholar
  19. 19.
    J.B. Ferguson, F. Sheykh-Jaberi, C.S. Kim, P.K. Rohatgi, and K. Cho, Mater. Sci. Eng. A 558, 193 (2012).CrossRefGoogle Scholar
  20. 20.
    M. Jurczyk, K. Niespodziana, and K. Jurczyk, Obróbka Plast. Met. 19, 37 (2008).Google Scholar
  21. 21.
    G.K. Stylios, P.V. Giannoudis, and T. Wan, Injury 36, S6 (2005).CrossRefGoogle Scholar
  22. 22.
    H. Agheli, J. Malmström, P. Hanarp, and D.S. Sutherland, Mater. Sci. Eng. C 26, 911 (2006).CrossRefGoogle Scholar
  23. 23.
    K. Niespodziana, K. Jurczyk, and M. Jurczyk, Nanopages 1, 219 (2006).CrossRefGoogle Scholar
  24. 24.
    M.U. Jurczyk, K. Jurczyk, K. Niespodziana, A. Miklaszewski, and M. Jurczyk, Mater. Charact. 77, 99 (2013).CrossRefGoogle Scholar
  25. 25.
    Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free, Int. Mater. Rev. 63, 407 (2018).CrossRefGoogle Scholar
  26. 26.
    A. Azarniya, A. Azarniya, S. Sovizi, H.R.M. Hosseini, T. Varol, A. Kawasaki, and S. Ramakrishna, Prog. Mater. Sci. 90, 276 (2017).CrossRefGoogle Scholar
  27. 27.
    G.S. Upadhyaya, Powder Metallurgy Technology (Cambridge: Cambridge International Science, 1997).Google Scholar
  28. 28.
    J. Beddoes and M. Bibby, Principles of Metal Manufacturing Processes (New York: Butterworth-Heinemann, 1999).Google Scholar
  29. 29.
    D. Tiwari, B. Basu, and K. Biswas, Ceram. Int. 35, 699 (2009).CrossRefGoogle Scholar
  30. 30.
    M. Tokita, in Materials Science Forum (Trans Tech Publications, 1999), pp. 83–88.Google Scholar
  31. 31.
    F.V. Lenel, JOM 7, 158 (1955).CrossRefGoogle Scholar
  32. 32.
    S.R. Bakshi, D. Lahiri, and A. Agarwal, Int. Mater. Rev. 55, 41 (2010).CrossRefGoogle Scholar
  33. 33.
    E. Thostenson, Compos. Sci. Technol. 61, 1899 (2001).CrossRefGoogle Scholar
  34. 34.
    V. Viswanathan, T. Laha, K. Balani, A. Agarwal, and S. Seal, Mater. Sci. Eng. Rep. 54, 121 (2006).CrossRefGoogle Scholar
  35. 35.
    B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R.O. Ritchie, Mater. Sci. Eng. A 334, 173 (2002).CrossRefGoogle Scholar
  36. 36.
    M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Science 287, 637 (2000).CrossRefGoogle Scholar
  37. 37.
    M.-F. Yu, B.I. Yakobson, and R.S. Ruoff, J. Phys. Chem. B 104, 8764 (2000).CrossRefGoogle Scholar
  38. 38.
    J. Liao and M.-J. Tan, Powder Technol. 208, 42 (2011).CrossRefGoogle Scholar
  39. 39.
    A.M. Okoro, M. Awotunde, O.A. Ajiteru, S.S. Lephuthing, P.A. Olubambi, and R. Machaka, in 2018 IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT) (IEEE, 2018), pp. 54–59.Google Scholar
  40. 40.
    W.M.R.M. Daoush, H.S. Park, F. Inam, B.K. Lim, and S.H. Hong, Metall. Mater. Trans. A 46, 1385 (2015).CrossRefGoogle Scholar
  41. 41.
    M. Suarez, A. Fernandez, J.L. Menendez, R. Torrecillas, H.U. Kessel, J. Hennicke, R. Kirchner, and T. Kessel, Sintering Applications (IntechOpen, 2013).Google Scholar
  42. 42.
    R. Licheri, S. Fadda, R. Orrù, G. Cao, and V. Buscaglia, J. Eur. Ceram. Soc. 27, 2245 (2007).CrossRefGoogle Scholar
  43. 43.
    M. Sribalaji, B. Mukherjee, A. Islam, and A. Kumar Keshri, Mater. Sci. Eng. A 702, 10 (2017).CrossRefGoogle Scholar
  44. 44.
    S.-J.L. Kang, Sintering: Densification, Grain Growth and Microstructure (New York: Elsevier, 2004).Google Scholar
  45. 45.
    R.M. German, in Proceedings 3rd International Conference on Science, Technology Applied Sintering (2003), pp. 15–17.Google Scholar
  46. 46.
    C.A. Handwerker, J.E. Blendell, and R.L. Coble, in Science Sintering (Springer, New York, 1989), pp. 3–37.Google Scholar
  47. 47.
    R. German, Sintering: From Empirical Observations to Scientific Principles (New York: Butterworth-Heinemann, 2014).Google Scholar
  48. 48.
    K. Vasanthakumar, N.S. Karthiselva, N.M. Chawake, and S.R. Bakshi, J. Alloys Compd. 709, 829 (2017).CrossRefGoogle Scholar
  49. 49.
    A.O. Adegbenjo, P.A. Olubambi, J.H. Potgieter, M.B. Shongwe, and M. Ramakokovhu, Mater. Des. 128, 119 (2017).CrossRefGoogle Scholar
  50. 50.
    F.C. Wang, Z.H. Zhang, Y.J. Sun, Y. Liu, Z.Y. Hu, H. Wang, A.V. Korznikov, E. Korznikova, Z.F. Liu, and S. Osamu, Carbon N. Y. 95, 396 (2015).CrossRefGoogle Scholar
  51. 51.
    L. Jiang and L. Gao, Ceram. Int. 34, 231 (2008).CrossRefGoogle Scholar
  52. 52.
    K.S. Munir, Y. Zheng, D. Zhang, J. Lin, Y. Li, and C. Wen, Mater. Sci. Eng. A 688, 505 (2017).CrossRefGoogle Scholar
  53. 53.
    A.I. Khan, I.A. Navid, M. Noshin, H.M. Uddin, F.F. Hossain, and S. Subrina, Electronics 4, 1109 (2015).CrossRefGoogle Scholar
  54. 54.
    B. Debalina, N. Vaishakh, M. Jagannatham, K. Vasanthakumar, N.S. Karthiselva, R. Vinu, P. Haridoss, and S.R. Bakshi, Ceram. Int. 42, 14266 (2016).CrossRefGoogle Scholar
  55. 55.
    W.A. Curtin and B.W. Sheldon, Mater. Today 7, 44 (2004).CrossRefGoogle Scholar
  56. 56.
    A.H. Javadi, S. Mirdamadi, M.A. Faghihisani, S. Shakhesi, and R. Soltani, Xinxing Tan Cailiao/New Carbon Mater. 27, 161 (2012).CrossRefGoogle Scholar
  57. 57.
    A.M. Okoro, R. Machaka, S.S. Lephuthing, M. Awotunde, and P.A. Olubambi, in IOP Conference Series Materials Science Engineering (2018), p. 12004.Google Scholar
  58. 58.
    H. Wang, X. Li, J. Ma, G. Li, and T. Hu, Compos. A Appl. Sci. Manuf. 43, 317 (2012).CrossRefGoogle Scholar
  59. 59.
    K.G. Dassios, G. Bonnefont, G. Fantozzi, and T.E. Matikas, J. Eur. Ceram. Soc. 35, 2599 (2015).CrossRefGoogle Scholar
  60. 60.
    S. Li, B. Sun, H. Imai, and K. Kondoh, Carbon N. Y. 61, 216 (2013).CrossRefGoogle Scholar
  61. 61.
    K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, and B. Fugetsu, Compos. Sci. Technol. 69, 1077 (2009).CrossRefGoogle Scholar
  62. 62.
    K. Kondoh, T. Threrujirapapong, J. Umeda, and B. Fugetsu, Compos. Sci. Technol. 72, 1291 (2012).CrossRefGoogle Scholar
  63. 63.
    F.H. William and H. Hosford, USA University Michigan. Google Scholar (2005).Google Scholar
  64. 64.
    Y. Estrin, G. Gottstein, and L.S. Shvindlerman, Scr. Mater. 50, 993 (2004).CrossRefGoogle Scholar
  65. 65.
    M.J.R. Barboza, E.A.C. Perez, M.M. Medeiros, D.A.P. Reis, M.C.A. Nono, F.P. Neto, and C.R.M. Silva, Mater. Sci. Eng. A 428, 319 (2006).CrossRefGoogle Scholar
  66. 66.
    S.J. Yoo, S.H. Han, and W.J. Kim, Scr. Mater. 68, 711 (2013).CrossRefGoogle Scholar
  67. 67.
    B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, and K. Kondoh, Mater. Des. 72, 1 (2015).CrossRefGoogle Scholar
  68. 68.
    G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
  69. 69.
    J. Gonzalez-Julian, A. Datye, K.-H. Wu, J. Schneider, and M. Belmonte, Carbon N. Y. 72, 338 (2014).CrossRefGoogle Scholar
  70. 70.
    G.M. Pharr, E.G. Herbert, and Y. Gao, Annu. Rev. Mater. Res. 40, 271 (2010).CrossRefGoogle Scholar
  71. 71.
    R.W. Rice, Mechanical Properties of Ceramics and Composites: Grain and Particle Effects (Boca Raton, FL: CRC Press, 2000).CrossRefGoogle Scholar
  72. 72.
    J.B. Wachtman, W.R. Cannon, and M.J. Matthewson, Mechanical Properties of Ceramics (New York: Wiley, 2009).CrossRefGoogle Scholar
  73. 73.
    F. Xue, S. Jiehe, F. Yan, and C. Wei, Mater. Sci. Eng. A 527, 1586 (2010).CrossRefGoogle Scholar
  74. 74.
    D.H. Nam, S.I. Cha, B.K. Lim, H.M. Park, D.S. Han, and S.H. Hong, Carbon N. Y. 50, 2417 (2012).CrossRefGoogle Scholar
  75. 75.
    J.G. Park, D.H. Keum, and Y.H. Lee, Carbon N. Y. 95, 690 (2015).CrossRefGoogle Scholar
  76. 76.
    S.-H. Jung, M.-R. Kim, S.-H. Jeong, S.-U. Kim, O.-J. Lee, K.-H. Lee, J.-H. Suh, and C.-K. Park, Appl. Phys. A 76, 285 (2003).CrossRefGoogle Scholar
  77. 77.
    J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, and S.L. Dai, Mater. Sci. Eng. A 626, 400 (2015).CrossRefGoogle Scholar
  78. 78.
    E.O. Hall, Proc. Phys. Soc. B 64, 747 (1951).CrossRefGoogle Scholar
  79. 79.
    S. Li, B. Sun, H. Imai, T. Mimoto, and K. Kondoh, Compos. A Appl. Sci. Manuf. 48, 57 (2013).CrossRefGoogle Scholar
  80. 80.
    K.S. Munir, Y. Li, J. Lin, and C. Wen, Materialia 3, 122 (2018).CrossRefGoogle Scholar
  81. 81.
    A. Adegbenjo, P. Olubambi, and J. Potgieter, in International Conference on Theoretical, Applied and Experimental Mechanics (2018), pp. 55–61.Google Scholar
  82. 82.
    H. Fujii, K. Takahashi, and Y. Yamashita, Shinnittetsu Giho 88, 62 (2003).Google Scholar
  83. 83.
    S. Singerman, J. Jackson, and M. Lynn, in Superalloys 1996, Proceedings of the Eighth International Symposium on Superalloys (1996).Google Scholar
  84. 84.
    F.M. Makau, K. Morsi, N. Gude, R. Alvarez, M. Sussman, and K. May-Newman, ISRN Biomater. (2013). Scholar
  85. 85.
    S.K. Smart, A.I. Cassady, G.Q. Lu, and D.J. Martin, Carbon N. Y. 44, 1034 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Centre for Nanoengineering and Tribocorrosion, Department of Metallurgy, School of Mining, Metallurgy and Chemical EngineeringUniversity of JohannesburgJohannesburgRepublic of South Africa

Personalised recommendations