Advertisement

JOM

, Volume 71, Issue 2, pp 683–690 | Cite as

Development of Novel Material Systems and Coatings for Extreme Environments: A Brief Overview

  • Radu R. PiticescuEmail author
  • Marina Urbina
  • Antonio Rinaldi
  • Santiago Cuesta-Lopez
  • Arcadii Sobetkii
Technological Innovations in Metals Engineering
  • 63 Downloads

Abstract

The aim of this paper is to briefly analyze different methodologies for development of novel materials systems and coatings for use in extreme environments, with a focus on high-temperature applications in aerospace and aeronautics. The approach is based on a comparative analysis of selected major thermal stability properties of different material systems (mainly transition-metal oxides and carbides) used in thermal protection systems and how different existing coating methods can be used as best available technologies to implement these new materials in high-temperature coatings. Finally, an original example of high-temperature coatings based on barium and lanthanum zirconates with perovskite structure obtained by electron beam vapor deposition is presented.

Notes

Acknowledgements

Financial support from H2020 Grant Agreement TWINNING 692216 “The Virtual Center for Sustainable Development of Advanced Materials Operating under Extreme Conditions” (SUPERMAT) and COST Action 15102 “Solutions for Critical Raw Materials under Extreme Conditions” is acknowledged. R.R.P. and A.S. also acknowledge financial support from the grant of the Romanian Ministry of Research and Innovation, RDI Program for Space Technology and Advanced Research - STAR, project number 528 (Androtech) and Core Program 1807/2018 Emernef with support from MCI.

References

  1. 1.
    P. French, G. Krijnen, and F. Roozeboom, Microsyst. Nanoeng. 2, 16048 (2016).CrossRefGoogle Scholar
  2. 2.
    R.J. Hemley, Off. Basic Energy Sci. (2008).  https://doi.org/10.2172/935440.Google Scholar
  3. 3.
    N. Simos, Composite Materials/Book 2 (Delft: InTECH Open Publisher, 2011).Google Scholar
  4. 4.
    E.J. Oughton, A. Skelton, R.B. Horne, A.W.P. Thomson, and C.T. Gaunt, Space Weather 15, 65 (2017).CrossRefGoogle Scholar
  5. 5.
    M.H. Hapgood, R.B. Kerridge, D. Jones, B. Cannon, P. Ryden, K. Gibbs, M. Jackson, D. Rodger, A. Thomson, A. Dyer, and C. Cander, Summary of Space Weather Worst-case Environments (Didcot: RAL Technical Report, Science and Technology Facilities Council, 2012).Google Scholar
  6. 6.
    Space Studies Board, A Workshop Report (Washington: National Academies Press, 2009).Google Scholar
  7. 7.
    C.J. Schrijver, K. Kauristie, A.D. Aylward, C.M. Denardini, S.E. Gibson, and A. Glover, Adv. Space Res. 55, 2745 (2015).CrossRefGoogle Scholar
  8. 8.
    J.P. Eastwood, E. Biffis, M.A. Hapgood, L. Green, M.M. Bisi, R.D. Bentley, R. Wicks, L.A. McKinnell, M. Gibbs, and C. Burnett, Risk Anal. 37, 206 (2017).CrossRefGoogle Scholar
  9. 9.
    J. Binner, B. Lee, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications (IV-An ECI Conference Series Cumberland Lodge, Windsor, 2017).Google Scholar
  10. 10.
    X.Q. Cao, R. Vassen, and D. Stoever, J. Eur. Ceram. Soc. 24, 1 (2014).CrossRefGoogle Scholar
  11. 11.
    E.L. Corral, Adv. Mater. Process. 166, 30 (2008).Google Scholar
  12. 12.
    W.G. Fahrenholtz, J. Binner, and J. Zhou, J. Mater. Res. 31, 2757 (2016).CrossRefGoogle Scholar
  13. 13.
    R.V. Dennis, J.L. Andrews, V.S. Patil, and S. Banerjee, Mater. Res. Express 2, 032001 (2015).CrossRefGoogle Scholar
  14. 14.
    W. Gissler and H.A. Jehn, Advanced Techniques for Surface Engineering (New York: Springer, 1992).CrossRefGoogle Scholar
  15. 15.
    A. Tiwari, R. Wang, and B. Wei, Advanced Surface Engineering Materials (Beverly, MA: Scrivener Publishing LLC, 2016).CrossRefGoogle Scholar
  16. 16.
    D.K. Dwoivedi, Surface Engineering (New York: Springer, 2018).CrossRefGoogle Scholar
  17. 17.
    A. Eder, G. Schmid, H. Mahr, and C. Eisenmenger-Sittner, Eur. Phys. J. D 70, 247 (2016).CrossRefGoogle Scholar
  18. 18.
    K. Sarakinos, J. Alami, and S. Konstantinidis, Surf. Coat. Technol. 204, 1661 (2010).CrossRefGoogle Scholar
  19. 19.
    P.M. Martin, Handbook of Deposition Technologies for Films and Coatings, 3rd ed. (Amsterdam: Elsevier, 2010).Google Scholar
  20. 20.
    Y. Kuzminykh, A. Dabirian, M. Reinke, and P. Hoffmann, Surf. Coat. Technol. 230, 13 (2013).CrossRefGoogle Scholar
  21. 21.
    J.T.D. Marcin and D.K. Gupta, Surf. Coat. Technol. 68–69, 1 (1994).CrossRefGoogle Scholar
  22. 22.
    P.C. Patnaik, X. Huang, J. Singh, Meeting Proceedings RTO-MP-AVT-135 (Paper 38, 2006)Google Scholar
  23. 23.
    J.D. Rigney, A.F. Maricocchi, B.R.Tholke, K.S. Fessenden, J.D. Evans, Method for forming a thermal barrier coating by electron beam physical vapor deposition, US Patent No. 6,342,278B1 (2002)Google Scholar
  24. 24.
    H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and D. Stoever, J. Thermal Spray Technol. 17, 115 (2007).CrossRefGoogle Scholar
  25. 25.
    P. Fauchais, V. Rat, J.-F. Coudert, R.E. Salas, and G. Montavon, Surf. Coat. Technol. 202, 4309 (2008).CrossRefGoogle Scholar
  26. 26.
    B. Bernard, A. Quet, L. Bianchi, A. Joulia, A. Malie, V. Schick, and B. Remy, Surf. Coat. Technol. 318, 122 (2017).CrossRefGoogle Scholar
  27. 27.
    S.-Y. Ho, A. Kotousov, P. Nguyen, S. Harding, J. Codrington, and H. Tsukamoto, Report No 064043 (Adelaide: University of Adelaide, 2017).Google Scholar
  28. 28.
    S.M. Johnson, 16th AIAA/DLR/DGLR International Space Planes & Hypersonic Systems & Technologies Conference (Bremen, 2009)Google Scholar
  29. 29.
    R. Darolia, Int. Mater. Rev. 58, 315 (2013).CrossRefGoogle Scholar
  30. 30.
    M.F. Morks, I. Cole, and A. Kobayashi, Vacuum 88, 134 (2013).CrossRefGoogle Scholar
  31. 31.
    S.A. Kuznetsov, Chem. Pap. 66, 511 (2012).CrossRefGoogle Scholar
  32. 32.
    A. Ganvir, N. Curry, S. Govindarajan, and N. Markocsan, Int. J. Appl. Ceram. Technol. 13, 324 (2016).CrossRefGoogle Scholar
  33. 33.
    E.H. Jordan, C. Jiang, and M. Gell, Thermal Spray Technol. 24, 1153 (2015).CrossRefGoogle Scholar
  34. 34.
    M. Urbina, A. Rinaldi, S. Cuesta-Lopez, A. Sobetkii, A.E. Slobozeanu, P. Szakalos, Y. Qin, M. Prakasam, and R.R. Piticescu, Manuf. Rev. 5, 9 (2018).  https://doi.org/10.1051/mfreview/2018006.Google Scholar
  35. 35.
    B.A. Movchan and K.Y. Yakovchuk, J. Coat. Sci. Technol. 1, 96 (2014).Google Scholar
  36. 36.
    A. Sobetkii, A.I. Tudor, C.F. Rusti, R.R. Piticescu, A. Rinaldi, D. Valerini, Proceedings 18th EEEI Conference (Palermo, 2018)Google Scholar
  37. 37.
    D.M. Sanders, A. Anders, The 27th International Conference on Metallurgical Coatings and Thin Films-ICMCTF2000 (San Diego, 2000), p. 110–114Google Scholar
  38. 38.
    R. Prabu, S. Ramesh, M. Savitha, M. Balachandar, Proceedings of the International Conference on Sustainable Manufacturing, p. 427 (2013)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.National R&D Institute for Nonferrous and Rare Metals-IMNRPantelimonRomania
  2. 2.Commisariat à l’Energie Atomique et aux Energies AlternativesLaboratoire d’Innovation pour les Technologies des Energies Nouvelles CEA-LITENGrenoble Cedex 9France
  3. 3.Agenzia Nazionale per le Nuove Technologie, l’Energia e lo Sviluppo Economico Sostenabile-ENEACasaccia Research CentreRomeItaly
  4. 4.ICAMCyL Foundation - International Center for Advanced Materials and Raw Materials of Castilla y LeonBurgosSpain

Personalised recommendations