Advertisement

JOM

pp 1–12 | Cite as

Selective Laser Melting of 316L Stainless Steel: Physics of Melting Mode Transition and Its Influence on Microstructural and Mechanical Behavior

  • Akash Aggarwal
  • Sushil Patel
  • Arvind KumarEmail author
Additive Manufacturing: Validation and Control
  • 161 Downloads

Abstract

A combined computational–experimental study is performed to investigate the effect of melting modes (conduction, transition and keyhole) on 316L stainless steel parts fabricated by selective laser melting. A high-fidelity mesoscale model is developed using the LIGGGHTS and OpenFOAM open-source codes to describe the physical phenomena (convection, melting, evaporation and solidification), melt flow dynamics and melting mode transition. The developed model helps to understand laser/matter interaction, melting of particles, the effect of recoil pressure and the formation of fusion zone. The computational results were found consistent with the single-track experimental results. Furthermore, for establishing the influence of melting mode on microstructural and mechanical properties, bulk samples with different melting modes were fabricated and characterized by comparing the microstructure, microhardness, nanohardness and tensile behavior. The experimental results showed that the stable keyhole mode results in higher hardness, higher elongation and finer cellular grains compared with the conduction mode.

References

  1. 1.
    W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).CrossRefGoogle Scholar
  2. 2.
    W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, and A.M. Rubenchik, J. Mater. Process. Technol. 214, 2915 (2014).CrossRefGoogle Scholar
  3. 3.
    Z. Saldi, A. Kidess, S. Kenjereš, C. Zhao, I. Richardson, and C. Kleijn, Int. J. Heat Mass Transf. 66, 879 (2013).CrossRefGoogle Scholar
  4. 4.
    R. Fabbro, J. Phys. D 43, 445501 (2010).CrossRefGoogle Scholar
  5. 5.
    M. Courtois, M. Carin, P.L. Masson, S. Gaied, and M. Balabane, J. Phys. D 46, 505305 (2013).CrossRefGoogle Scholar
  6. 6.
    D.B. Hann, J. Iammi, and J. Folkes, J. Phys. D 44, 445401 (2011).CrossRefGoogle Scholar
  7. 7.
    J.J.S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, and B. Stucker, Progr. Addit. Manuf. 2, 157 (2017).CrossRefGoogle Scholar
  8. 8.
    U.S. Bertoli, A.J. Wolfer, M.J. Matthews, J.-P.R. Delplanque, and J.M. Schoenung, Mater. Des. 113, 331 (2017).CrossRefGoogle Scholar
  9. 9.
    J.L. Tan, C. Tang, and C.H. Wong, Metall. Mater. Trans. A 49, 3663 (2018).CrossRefGoogle Scholar
  10. 10.
    T. Qi, H. Zhu, H. Zhang, J. Yin, L. Ke, and X. Zeng, Mater. Des. 135, 257 (2017).CrossRefGoogle Scholar
  11. 11.
    G.E. Bean, D.B. Witkin, T.D. Mclouth, D.N. Patel, and R.J. Zaldivar, Addit. Manuf. 22, 207 (2018).CrossRefGoogle Scholar
  12. 12.
    T.D. Mclouth, G.E. Bean, D.B. Witkin, S.D. Sitzman, P.M. Adams, D.N. Patel, W. Park, J.-M. Yang, and R.J. Zaldivar, Mater. Des. 149, 205 (2018).CrossRefGoogle Scholar
  13. 13.
    J. Ciurana, L. Hernandez, and J. Delgado, Int. J. Adv. Manuf. Technol. 68, 1103 (2013).CrossRefGoogle Scholar
  14. 14.
    K.-H. Leitz, C. Grohs, P. Singer, B. Tabernig, A. Plankensteiner, H. Kestler, and L. Sigl, Int. J. Refract. Metals Hard Mater. 72, 1 (2018).CrossRefGoogle Scholar
  15. 15.
    C. Kloss, C. Goniva, A. Hager, S. Amberger, and S. Pirker, Prog. Comput. Fluid Dyn. 12, 140 (2012).MathSciNetCrossRefGoogle Scholar
  16. 16.
    E.J. Parteli and T. Pöschel, Powder Technol. 288, 96 (2016).CrossRefGoogle Scholar
  17. 17.
    C. Tang, J. Tan, and C. Wong, Int. J. Heat Mass Transf. 126, 957 (2018).CrossRefGoogle Scholar
  18. 18.
    H.G. Weller, G. Tabor, H. Jasak, and C. Fureby, Comput. Phys. 12, 620 (1998).CrossRefGoogle Scholar
  19. 19.
    N. Samkhaniani and M.R. Ansari, Heat Mass Transf. 53, 2885 (2017).CrossRefGoogle Scholar
  20. 20.
    A.D. Brent, V.R. Voller, and K.J. Reid, Numer. Heat Transf. B-Fund. 13, 297 (1988).CrossRefGoogle Scholar
  21. 21.
    S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Acta Mater. 108, 36 (2016).CrossRefGoogle Scholar
  22. 22.
    N. Pathak, A. Kumar, A. Yadav, and P. Dutta, Appl. Therm. Eng. 29, 3669 (2009).CrossRefGoogle Scholar
  23. 23.
    T. Mukherjee, H. Wei, A. De, and T. Debroy, Comput. Mater. Sci. 150, 369 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations