Advertisement

JOM

pp 1–9 | Cite as

Nanoscratch Behavior of Metallic Glass/Crystalline Nanolayered Composites

  • Mohammad Abboud
  • Amir Motallebzadeh
  • Nisha Verma
  • Sezer Özerinç
Advanced Nanocomposite Materials: Structure-Property Relationships
  • 53 Downloads

Abstract

Nanolayered metallic glass/crystalline composites provide an effective structure for improving the ductility of metallic glasses while maintaining their outstanding strength. The combination of high strength and ductility make these nanocomposites promising materials as wear-resistant coatings. In this work, we experimentally investigated the mechanical properties and nanoscratch behavior of CuZr/Zr metallic glass/crystalline nanolayers. The scratch resistance was highest for the monolithic CuZr, and diminished with decreasing layer thickness for nanolayered coatings, although hardness and elastic modulus were independent of layer thickness. The nanocomposite with a layer thickness of 10 nm did not show any signs of failure in spite of compressive strain exceeding 80%. The low shear strength of the CuZr/Zr interface and strain hardening of Zr layers can explain the layer thickness-dependent scratch resistance and outstanding damage tolerance observed. Layered metallic glass/crystalline nanocomposites combine high hardness and resistance to fracture, providing a new design space for the development of effective wear-resistant coatings.

Notes

Acknowledgments

This research is supported by the Scientific and Technological Research Council of Turkey—CAREER Award #116M429 and METU-BAP Project #08-11-2016-072. We thank METU Central Laboratory, Koç University KUYTAM, and Bilkent University UNAM for their support in characterization measurements and Dr. Eren Kalay for useful discussions. TEM work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    W.H. Wang, C. Dong, and C.H. Shek, Mater. Sci. Eng. R 44, 45 (2004).CrossRefGoogle Scholar
  2. 2.
    A. Inoue and A. Takeuchi, Acta Mater. 59, 2243 (2011).CrossRefGoogle Scholar
  3. 3.
    M. Telford, Mater. Today 7, 36 (2004).CrossRefGoogle Scholar
  4. 4.
    J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, and C. Rullyani, Thin Solid Films 520, 5097 (2012).CrossRefGoogle Scholar
  5. 5.
    J. Schroers, Q. Pham, and A. Desai, J. Microelectromech. Syst. 16, 240 (2007).CrossRefGoogle Scholar
  6. 6.
    J.S. Langer, Scr. Mater. 54, 375 (2006).CrossRefGoogle Scholar
  7. 7.
    T.C. Hufnagel, C.A. Schuh, and M.L. Falk, Acta Mater. 109, 375 (2016).CrossRefGoogle Scholar
  8. 8.
    D.C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M.D. Demetriou, and W.L. Johnson, Nature 451, 1085 (2008).CrossRefGoogle Scholar
  9. 9.
    Y. Wang, J. Li, A.V. Hamza, and T.W. Barbee, Proc. Natl. Acad. Sci. USA 104, 11155 (2007).CrossRefGoogle Scholar
  10. 10.
    W. Guo, E. Jägle, J. Yao, V. Maier, S. Korte-Kerzel, J.M. Schneider, and D. Raabe, Acta Mater. 80, 94 (2014).CrossRefGoogle Scholar
  11. 11.
    M.C. Liu, J.C. Huang, H.S. Chou, Y.H. Lai, C.J. Lee, and T.G. Nieh, Scr. Mater. 61, 840 (2009).CrossRefGoogle Scholar
  12. 12.
    J.Y. Zhang, Y. Liu, J. Chen, Y. Chen, G. Liu, X. Zhang, and J. Sun, Mater. Sci. Eng. A 552, 392 (2012).CrossRefGoogle Scholar
  13. 13.
    M.C. Liu, C.J. Lee, Y.H. Lai, and J.C. Huang, Thin Solid Films 518, 7295 (2010).CrossRefGoogle Scholar
  14. 14.
    J. Musil, Surf. Coat. Technol. 125, 322 (2000).CrossRefGoogle Scholar
  15. 15.
    S.Y. Kuan, H.S. Chou, M.C. Liu, X.H. Du, and J.C. Huang, Intermetallics 18, 2453 (2010).CrossRefGoogle Scholar
  16. 16.
    A.M. Hodge and T.G. Nieh, Intermetallics 12, 741 (2004).CrossRefGoogle Scholar
  17. 17.
    X. Li and B. Bhushan, Mater. Charact. 48, 11 (2002).CrossRefGoogle Scholar
  18. 18.
    M. Callisti and T. Polcar, Acta Mater. 124, 247 (2017).CrossRefGoogle Scholar
  19. 19.
    Z.T. Wang, K.Y. Zeng, and Y. Li, Scr. Mater. 65, 747 (2011).CrossRefGoogle Scholar
  20. 20.
    M. Apreutesei, P. Steyer, L. Joly-Pottuz, A. Billard, J. Qiao, S. Cardinal, F. Sanchette, J.M. Pelletier, and C. Esnouf, Thin Solid Films 561, 53 (2014).CrossRefGoogle Scholar
  21. 21.
    C. Yuan, R. Fu, F. Zhang, X. Zhang, and F. Liu, Mater. Sci. Eng. A 565, 27 (2013).CrossRefGoogle Scholar
  22. 22.
    J. Gong, T. Benjamin Britton, M.A. Cuddihy, F.P.E. Dunne, and A.J. Wilkinson, Acta Mater. 96, 249 (2015).CrossRefGoogle Scholar
  23. 23.
    D. Tabor, The Hardness of Metals (Oxford: Oxford University Press, 2000).Google Scholar
  24. 24.
    A. Misra, J.P. Hirth, and R.G. Hoagland, Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
  25. 25.
    J. Wang, Q. Zhou, S. Shao, and A. Misra, Mater. Res. Lett. 5, 1 (2017).CrossRefGoogle Scholar
  26. 26.
    M.C. Liu, J.C. Huang, Y.T. Fong, S.P. Ju, X.H. Du, H.J. Pei, and T.G. Nieh, Acta Mater. 61, 3304 (2013).CrossRefGoogle Scholar
  27. 27.
    A.C. Fischer-Cripps, Nanoindentation, 2nd ed. (New York: Springer, 2004).CrossRefGoogle Scholar
  28. 28.
    M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
  29. 29.
    F.X. Liu, F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic, and P.K. Liaw, Surf. Coat. Technol. 203, 3480 (2009).CrossRefGoogle Scholar
  30. 30.
    C.-C. Yu, C.M. Lee, J.P. Chu, J.E. Greene, and P.K. Liaw, APL Mater. 4, 116101 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Micro and NanotechnologyMiddle East Technical UniversityAnkaraTurkey
  2. 2.Surface Science and Technology CenterKoç UniversityIstanbulTurkey
  3. 3.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Department of Mechanical EngineeringMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations