Advertisement

JOM

, Volume 71, Issue 2, pp 754–763 | Cite as

Effect of Slag Layer on the Multiphase Interaction in a Converter

  • Lingling Cao
  • Qing LiuEmail author
  • Jiankun Sun
  • Wenhui Lin
  • Xiaoming Feng
CFD Modeling and Simulation in Materials Processing
  • 53 Downloads

Abstract

A supersonic oxygen jet impinging onto the slag–metal interface is studied using computational fluid dynamics modeling with the aim of obtaining a better understanding of the multiphase interaction behavior in a converter. The dynamic interaction behavior as well as the effects of the slag thickness, viscosity, and surface tension are studied numerically. The results show that the geometrical dimensions of the cavity generated by the multiphase interaction decrease with increasing slag thickness. The presence of the slag layer can restrain splashing and droplet generation in the converter. However, the slag viscosity and surface tension have little effect on the momentum of the multiphase interaction, especially in the area away from the interaction zone under the present simulation conditions. The splashing behavior is not sensitive to the slag properties. The droplet generation rate changes slightly with variation of the slag viscosity and surface tension.

Notes

Acknowledgements

Financial support from the Ministry of Education of the People’s Republic of China (No. 20120006110036) and Jiangxi Provincial Department of Science and Technology (20171ACE50020) is gratefully acknowledged. Lingling Cao thanks the China Scholarship Council (201600090009) for support.

References

  1. 1.
    Y. Higuchi and Y. Tago, Tetsu-to-Hagané 86, 654 (2000).CrossRefGoogle Scholar
  2. 2.
    I. Roderick and L. Guthrie, Metal. Mater. Trans. B 35, 417 (2004).CrossRefGoogle Scholar
  3. 3.
    K. Chattopadhyay, Iron Steel Technol. 11, 277 (2014).Google Scholar
  4. 4.
    L.L. Cao, Y.N. Wang, Q. Liu, and X.M. Feng, ISIJ Int. 58, 573 (2018).CrossRefGoogle Scholar
  5. 5.
    J. Szekely, JOM 42, 16 (1990).CrossRefGoogle Scholar
  6. 6.
    J. Szekely and S. Asai, Metall. Trans. 5, 463 (1974).CrossRefGoogle Scholar
  7. 7.
    A. Chatterjee, N.O. Lindfors, and J.A. Wester, Ironmak. Steelmak. 3, 21 (1976).Google Scholar
  8. 8.
    Y. Tago and Y. Higuchi, ISIJ Int. 43, 209 (2003).CrossRefGoogle Scholar
  9. 9.
    H.-J. Odenthal, U. Falkenreck, and J. Schlüter, in Paper presented at the European Conference on Computational Fluid Dynamics, TU Delft, The Netherlands (2006).Google Scholar
  10. 10.
    W.J. Wang, Z.F. Yuan, H. Matsuura, H.X. Zhao, C. Dai, and F. Tsukihashi, ISIJ Int. 50, 491 (2010).CrossRefGoogle Scholar
  11. 11.
    F. Qian, R. Mutharasan, and B. Farouk, Metal. Mater. Trans. B 27, 911 (1996).CrossRefGoogle Scholar
  12. 12.
    O. Olivares, A. Elias, R. Sánchez, M. Díaz-Cruz, and R.D. Morales, Steel Res. Int. 73, 44 (2002).CrossRefGoogle Scholar
  13. 13.
    A.V. Nguyen and G.M. Evans, Appl. Math. Model. 30, 1472 (2006).CrossRefGoogle Scholar
  14. 14.
    M. Ersson, L. Höglund, A. Tilliander, L. Jonsson, and P. Jönsson, ISIJ Int. 48, 147 (2008).CrossRefGoogle Scholar
  15. 15.
    M. Ersson, A. Tilliander, L. Jonsson, and P. Jönsson, ISIJ Int. 48, 377 (2008).CrossRefGoogle Scholar
  16. 16.
    M. Asai, H. Nijo, and K. Ito, ISIJ Int. 49, 178 (2009).CrossRefGoogle Scholar
  17. 17.
    D. Muñoz-Esparza, J.M. Buchlin, K. Myrillas, and R. Berger, Appl. Math. Model. 36, 2687 (2012).MathSciNetCrossRefGoogle Scholar
  18. 18.
    Y. Doh, P. Chapelle, and A. Jardy, Metal. Mater. Trans. B 44, 653 (2013).CrossRefGoogle Scholar
  19. 19.
    Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou, Metall. Mater. Trans. B 46, 1494 (2015).CrossRefGoogle Scholar
  20. 20.
    N. Asahara, K. Naito, I. Kitagawa, M. Matsuo, M. Kumakura, and M. Iwasaki, Steel Res. Int. 82, 587 (2011).CrossRefGoogle Scholar
  21. 21.
    Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou, Can. Metall. Q. 53, 340 (2014).CrossRefGoogle Scholar
  22. 22.
    L.L. Cao, Q. Liu, Z. Wang, and N. Li, Ironmak. Steelmak. 45, 239 (2018).CrossRefGoogle Scholar
  23. 23.
    S. Sabah and G. Brooks, Ironmak. Steelmak. 43, 473 (2016).CrossRefGoogle Scholar
  24. 24.
    Subagyo, G. Brooks, K.S. Coley, and G.A. Irons, ISIJ Int. 43, 983 (2003).CrossRefGoogle Scholar
  25. 25.
    N. Dogan, G. Brooks, and M.A. Rhamdhani, ISIJ Int. 49, 24 (2009).CrossRefGoogle Scholar
  26. 26.
    M. Alam, J. Naser, and G. Brooks, Metal. Mater. Trans. B 41, 636 (2010).CrossRefGoogle Scholar
  27. 27.
    M. Alam, J. Naser, G. Brooks, and A. Fontana, ISIJ Int. 52, 1026 (2012).CrossRefGoogle Scholar
  28. 28.
    B.K. Rout, G. Brooks, M. Subagyo, A. Rhamdhani, and Z. Li, Metal. Mater. Trans. B 47, 3350 (2016).CrossRefGoogle Scholar
  29. 29.
    G. Turner and S. Jahanshahi, Trans. Iron Steel Inst. Jpn. 27, 734 (1987).CrossRefGoogle Scholar
  30. 30.
    S. Sabah and G. Brooks, Metall. Mater. Trans. B 47, 458 (2016).CrossRefGoogle Scholar
  31. 31.
    S.W. Welch and J. Wilson, J. Comput. Phys. 160, 662 (2000).CrossRefGoogle Scholar
  32. 32.
    J.U. Brackbill, D.B. Kothe, and C. Zemach, J. Comput. Phys. 100, 335 (1992).MathSciNetCrossRefGoogle Scholar
  33. 33.
    B.E. Launder and D.B. Spalding, Comput. Methods Appl. Mech. Eng. 3, 269 (1974).CrossRefGoogle Scholar
  34. 34.
    L.L. Cao, Y.N. Wang, L. Qing, L.F. Sun, S.S. Liao, W.D. Guo, K.S. Ren, B. Blanpain, and M.X. Guo, in Paper presented at the 147th Annual Meeting & Exhibition (2018), pp. 353–364.Google Scholar
  35. 35.
    M.S. Lee, S.L. O’Rourke, and N.A. Molloy, Scand. J. Metall. 32, 281 (2003).CrossRefGoogle Scholar
  36. 36.
    M. Lee, V. Whitney, and N. Molloy, Scand. J. Metall. 30, 330 (2001).CrossRefGoogle Scholar
  37. 37.
    M.Y. Zhu, Modern Metallurgical Technology (Beijing: Metallurgical Industry Press, 2007), pp. 169–170.Google Scholar
  38. 38.
    F.R. Cheslak, J.A. Nicholls, and M. Sichel, J. Fluid Mech. 36, 55 (1969).CrossRefGoogle Scholar
  39. 39.
    S. Sabah and G. Brooks, ISIJ Int. 54, 836 (2014).CrossRefGoogle Scholar
  40. 40.
    S.C. Koria and K.W. Lange, Metal. Mater. Trans. B 15, 109 (1984).CrossRefGoogle Scholar
  41. 41.
    F. Memoli, C. Mapelli, P. Ravanelli, and M. Corbella, ISIJ Int. 44, 1342 (2004).CrossRefGoogle Scholar
  42. 42.
    X. Zhou, M. Ersson, L. Zhong, and P. Jönsson, Metal. Mater. Trans. B 47, 434 (2016).CrossRefGoogle Scholar
  43. 43.
    K. Ito and R. Fruehan, Metal. Mater. Trans. B 20, 509 (1989).CrossRefGoogle Scholar
  44. 44.
    K. Ito and R. Fruehan, Metal. Mater. Trans. B 20, 515 (1989).CrossRefGoogle Scholar
  45. 45.
    R. Jiang and R. Fruehan, Metal. Mater. Trans. B 22, 481 (1991).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Lingling Cao
    • 1
  • Qing Liu
    • 1
    Email author
  • Jiankun Sun
    • 1
  • Wenhui Lin
    • 1
  • Xiaoming Feng
    • 2
  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Xinyu Iron and Steel Group Co. Ltd.XinyuChina

Personalised recommendations