Influence of Graphene Oxide on Mechanical and Hydrophilic Properties of Epoxy/Banana Fiber Composites
- 24 Downloads
Abstract
Epoxy/banana fiber (EBF) composites with fiber length of 5–7 mm and fiber content of 5.0 wt.% were prepared by hand layup technique. Graphene oxide (GO) was dispersed at different concentrations (1.0 wt.%, 2.5 wt.%, and 5.0 wt.%) in the EBF matrix using cetyltrimethylammonium bromide (CTAB), and its effect on the mechanical and hydrophilic properties of the EBF composites was assessed. The highest tensile strength of 11 MPa, flexural strength of 55 MPa, impact strength of 92 J/m and contact angle of 57° were recorded for the 5.0 wt.% GO-reinforced EBF composite, compared with 5 MPa, 27 MPa, 38 J/m, and 64° for the EBF composite and 4 MPa, 23 MPa, 31 J/m, and 65° for neat epoxy, respectively. It was observed that GO was dispersed uniformly in the EBF matrix by the CTAB treatment, improving the mechanical and hydrophilic properties of the EBF composites.
Notes
Acknowledgements
P.S.B. is grateful to TEQIP-III MHRD, New Delhi for providing financial assistance to carry out this research work. S.M. is grateful to UGC New Delhi for awarding a BSR Faculty Fellowship.
References
- 1.S. Mishra and D. Hansora, Graphene Nanomaterials: Fabrication, Properties and Applications (Singapore: Pan Stanford, 2018), pp. 20–25.Google Scholar
- 2.P. Bari, S. Khan, J. Njuguna, and S. Mishra, Int. J. Plast. Technol. 21, 194 (2017).CrossRefGoogle Scholar
- 3.P.S. Khobragade, D.P. Hansora, J.B. Naik, J. Njuguna, and S. Mishra, Polym. Int. 66, 1402 (2017).CrossRefGoogle Scholar
- 4.P. Bharadiya, R. Jain, V. Chaudhari, and S. Mishra, Polym. Compos. (in press). https://doi.org/10.1002/pc.25129.
- 5.D.P. Hansora, N.G. Shimpi, and S. Mishra, JOM 67, 2855 (2015).CrossRefGoogle Scholar
- 6.A. Rigail-Cedeno and C. Sook Paik Sung, Polymer 46, 9378 (2005).CrossRefGoogle Scholar
- 7.M.A. Maleque, F.Y. Belal, and S.M. Sapuan, Arab. J. Sci. Eng. 32, 359 (2006).Google Scholar
- 8.S.M. Sapuan, A. Leenie, M. Harimi, and Y.K. Beng, Mater. Des. 27, 689 (2006).CrossRefGoogle Scholar
- 9.Y.S. Ahin and P. De Baets, JOM 69, 12 (2017).CrossRefGoogle Scholar
- 10.M.R. Loos, S.H. Pezzin, S.C. Amico, C.P. Bergmann, and L.A.F. Coelho, J. Mater. Sci. 43, 6064 (2008).CrossRefGoogle Scholar
- 11.M.M. Ibrahim, A. Dufresne, W.K. El-Zawawy, and F.A. Agblevor, Carbohyd. Polym. 81, 811 (2010).CrossRefGoogle Scholar
- 12.S. Mishra and J.B. Naik, Polym. Plast. Technol. Eng. 46, 537 (2007).CrossRefGoogle Scholar
- 13.S. Mishra and J.B. Naik, J. Appl. Polym. Sci. 106, 2571 (2007).CrossRefGoogle Scholar
- 14.S. Mishra and J.B. Naik, J. Appl. Polym. Sci. 68, 1417 (1998).CrossRefGoogle Scholar
- 15.A.P. Irawan and I.W. Sukania, Appl. Mech. Mater. 776, 260 (2015).CrossRefGoogle Scholar
- 16.M. Mostafa and N. Uddin, Buildings 5, 282 (2015).CrossRefGoogle Scholar
- 17.M. Ramesh, R. Logesh, M. Manikandan, N.S. Kumar, and D.V. Pratap, Mater. Res. 20, 365 (2017).CrossRefGoogle Scholar
- 18.Z. Ortega, M. Morón, D.M. Monzón, P. Badalló, and R. Paz, Materials 9, 370 (2016).CrossRefGoogle Scholar
- 19.S. Kalia, A. Dufresne, B.M. Cherian, B.S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, Int. J. Polym. Sci. 2011, 1 (2011).Google Scholar
- 20.A.K. Pathak, M. Borah, A. Gupta, and T. Yokozeki, Compos. Sci. Technol. 135, 28 (2016).CrossRefGoogle Scholar
- 21.Md. Mamunur Rashid, S.A. Samad, M.A. Gafur, Md. Rakibul Qadir, and A.M. Sarwaruddin Chowdhury, Int. J. Polym. Sci. 2016, 1 (2016).CrossRefGoogle Scholar
- 22.R. Jain and S. Mishra, RSC Adv. 6, 27404 (2016).CrossRefGoogle Scholar
- 23.P.S. Khobragade, D.P. Hansora, J.B. Naik, J. Njuguna, and S. Mishra, Polym. Compos. 39, 3519 (2017).CrossRefGoogle Scholar
- 24.S.T. Cholake, M.R. Mada, R.K. Singh Raman, Y. Bai, X.L. Zhao, S. Rizkalla, and S. Bandyopadhyay, Defence Sci. J. 64, 314 (2014).CrossRefGoogle Scholar
- 25.G. Nikolic, S. Zlatkovic, M. Cakic, S. Cakic, C. Lacnjevac, and Z. Rajic, Sensors 10, 684 (2010).CrossRefGoogle Scholar