Advertisement

JOM

, Volume 71, Issue 1, pp 59–68 | Cite as

Comparison of Coil Configuration and Position on Flow Characteristics of A319 Aluminum in Electromagnetically Stirred Solidification Systems

  • Gregory M. PooleEmail author
  • Laurentiu Nastac
CFD Modeling and Simulation in Materials Processing
  • 57 Downloads

Abstract

This article examines the influence of an induction coil position and configuration on the fluid flow and heat transfer characteristics in electromagnetic (EM) solidification processes. The mutual inductance technique was used to solve for the EM field, whereas a dual-zone model was used to describe the flow in the two-phase “mushy” region, and accounts for damping of the flow due to grain growth within the suspended particle region. Simulations were performed for a A319 aluminum alloy within a laboratory-scale casting apparatus surrounded by a six turn coil for three configurations and three locations with respect to the melt. It was found that the coil arrangement had only a small effect on the flow structure and velocities in comparison with the coil position. The implications with regard to solidification behavior are discussed.

References

  1. 1.
    H.J. Kim, C. McMillan, G.A. Keoleian, and S.J. Skerlos, J. Ind. Ecol. 14, 929 (2010).CrossRefGoogle Scholar
  2. 2.
    N. Akhtar, W. Akhtar, and S.J. Wu, Int. J. Cast Metals Res. 28, 1 (2015).CrossRefGoogle Scholar
  3. 3.
    L. Nastac, Metall. Mater. Trans. B 42, 1297 (2011).CrossRefGoogle Scholar
  4. 4.
    S. Jia and L. Nastac, Chem. Mater. Eng. 1, 69 (2013).Google Scholar
  5. 5.
    M.L. Santella, T. Engstrom, D. Storjohann, and T.Y. Pan, Scripta Mater. 53, 201 (2005).CrossRefGoogle Scholar
  6. 6.
    D. Brabazon, D.J. Browne, and A.J. Carr, Mater. Sci. Eng. A 326, 370 (2002).CrossRefGoogle Scholar
  7. 7.
    B. Willers, S. Eckert, U. Michel, I. Haase, and G. Zouhar, Mater. Sci. Eng. A 402, 55 (2005).CrossRefGoogle Scholar
  8. 8.
    C. Vives and C. Perry, Int. J. Heat Mass Transf. 29, 21 (1986).CrossRefGoogle Scholar
  9. 9.
    W.D. Griffiths and D.G. McCartney, Mater. Sci. Eng. A 216, 47 (1996).CrossRefGoogle Scholar
  10. 10.
    T. Campanella, C. Charbon, and M. Rappaz, Metall. Mater. Trans. A 35, 3201 (2004).CrossRefGoogle Scholar
  11. 11.
    T. Campanella, C. Charbon, and M. Rappaz, Scripta Mater. 49, 1029 (2003).CrossRefGoogle Scholar
  12. 12.
    M.J. Heyen. “Effect of Electromagnetic Stirring on Grain Refinement of Al-4.5% Cu Alloy” (M.S. Thesis, University of Alabama, 2013).Google Scholar
  13. 13.
    N. El-Kaddah and J. Szekely, J. Fluid Mech. 133, 37 (1983).CrossRefGoogle Scholar
  14. 14.
    E.D. Tarapore and J.W. Evans, Metall. Mater. Trans. B 7, 343 (1976).CrossRefGoogle Scholar
  15. 15.
    E.D. Tarapore, J.W. Evans, and J. Langfeldt, Metall. Mater. Trans. B 8, 179 (1977).CrossRefGoogle Scholar
  16. 16.
    G. Poole and N. El-Kaddah, Metall. Mater. Trans. B 44, 1531 (2013).CrossRefGoogle Scholar
  17. 17.
    G. Poole and N. El-Kaddah, ISIJ Intl. 54, 321 (2014).CrossRefGoogle Scholar
  18. 18.
    N. El-Kaddah, J. Szekely, and G. Carlsson, Metall. Mater. Trans. B 15, 633 (1984).CrossRefGoogle Scholar
  19. 19.
    J. Meyer, J. Szekely, and N. El-Kaddah, Trans. ISIJ 27, 25 (1987).CrossRefGoogle Scholar
  20. 20.
    K. Nakanishi, T. Fujii, and J. Szekely, Ironmak. Steelmak. 2, 193 (1975).Google Scholar
  21. 21.
    R. Mehrabian, M. Keane, and M.C. Flemings, Metall. Trans. 1, 455 (1970).CrossRefGoogle Scholar
  22. 22.
    C.M. Oldenburg and F.J. Spera, Heat Transf. B 21, 217 (1992).CrossRefGoogle Scholar
  23. 23.
    P.J. Prescott and F.P. Incropera, J. Heat Transf. 117, 716 (1995).CrossRefGoogle Scholar
  24. 24.
    P.J. Prescott and F.P. Incropera, J. Heat Transf. 115, 302 (1993).CrossRefGoogle Scholar
  25. 25.
    W. Shyy, Y. Pang, G. Hunter, D.Y. Wei, and M.H. Chen, Intl. J. Heat Mass Transf. 35, 1229 (1992).CrossRefGoogle Scholar
  26. 26.
    W. Shyy, Y. Pang, G. Hunter, D.Y. Wei, and M.H. Chen, ASME J. Eng. Mater. Technol. 115, 8 (1993).CrossRefGoogle Scholar
  27. 27.
    Q. Chen and H. Shen, Int. J. Heat Mass Transf. 120, 997 (2018).CrossRefGoogle Scholar
  28. 28.
    R. Pardeshi, A.K. Singh, and P. Dutta, Numer. Heat Transf. A 55, 42 (2008).CrossRefGoogle Scholar
  29. 29.
    J.L. Meyer, N. El-Kaddah, J. Szekely, C. Vives, and R. Ricou, Metall. Trans. B 18, 529 (1987).CrossRefGoogle Scholar
  30. 30.
    J. Szekely and N.J. Themelis, Rate Phenomena in Process Metallurgy (New York: Wiley, 1971).Google Scholar
  31. 31.
    H. Tennekes and J.L. Lumley, A First Course in Turbulence (Cambridge, MA: MIT Press, 1972).zbMATHGoogle Scholar
  32. 32.
    D.G. Thomas, J. Colloid Sci. 20, 267 (1965).CrossRefGoogle Scholar
  33. 33.
    W.P. Jones and B.E. Launder, Intl. J. Heat Mass Transf. 15, 301 (1972).CrossRefGoogle Scholar
  34. 34.
    W.M. Pun and D.B. Spalding (Report HTS/76/2, Imperial College of Science and Technology, London, August 1977).Google Scholar
  35. 35.
    S.V. Patankar, Numerical Heat Transfer and Fluid Flow (New York: Hemisphere Publishing, 1980).zbMATHGoogle Scholar
  36. 36.
    G.M. Poole, M. Heyen, L. Nastac, and N. El-Kaddah, Metall. Mater. Trans. B 45, 1834 (2014).CrossRefGoogle Scholar
  37. 37.
    K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys (Cambridge: Woodhead Publishing, 2002), pp. 50–53.Google Scholar
  38. 38.
    S.I. Bakhtiyarov, R.A. Overfelt, and S.G. Teodorescu, J. Mater. Sci. 36, 4643 (2001).CrossRefGoogle Scholar
  39. 39.
    G.M. Poole and L. Nastac, in CFD Modeling and Simulation in Materials Processing 2018, eds. L. Nastac, K. Pericleous, A. Sabau, L. Zhang, and B. Thomas (New York: Springer, 2018), 9–18.Google Scholar
  40. 40.
    J.F. Grandfield, D.G. Eskin, and I.F. Bainbridge, Direct-Chill Casting of Light Alloys: Science and Technology (New York: Wiley, 2013), pp. 254–255.CrossRefGoogle Scholar
  41. 41.
    W. Kurz and D.J. Fisher, Fundamentals of Solidification (Rockport: Trans Tech Publications, 1986).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of South AlabamaMobileUSA
  2. 2.Department of Metallurgical and Materials EngineeringUniversity of AlabamaTuscaloosaUSA

Personalised recommendations