Advertisement

JOM

, Volume 71, Issue 1, pp 308–314 | Cite as

Stimuli-Responsive Nano-polymer Composite Materials Based on the Triazine Skeleton Structure Used in Drug Delivery

  • Xueying Peng
  • Lulu Wei
  • Xinbo Jing
  • Lin Cui
  • Jianning Wu
  • Guihua Meng
  • Zhiyong LiuEmail author
  • Xuhong Guo
Materials in Nanomedicine and Bioengineering
  • 117 Downloads

Abstract

Herein, we exploit the unique structure, high surface area and porous structure of covalent triazine polymers (CTP) for efficient and targeted drug delivery. We have designed and synthesized a nano-covalent triazine polymer (NCTP) by using Friedel–Crafts reactions and utilized it as a drug carrier for controlled release. The salient features of as-prepared NCTP include excellent dispersibility in physiologic solution and structural stability. Furthermore, we have achieved excellent loading of doxorubicin (DOX), an anticancer drug, onto the NCTP by utilizing the ππ interactions and hydrophobic nature. The toxicity of as-prepared NCTP was assessed by CaSki and HeLa cells, and high efficacy in vitro against both types of cells has been demonstrated.

Notes

Acknowledgements

The authors acknowledge financial support from the Corps Division Development and Innovation Support Program (2017BA041), National Natural Science Foundation of China (51662036) and Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan (2016BTRC008 and 2016BTRC005).

Supplementary material

11837_2018_3214_MOESM1_ESM.pdf (758 kb)
Supplementary material 1 (PDF 757 kb)

References

  1. 1.
    J. Badenhorst, A. Todd, L. Lindsey, J. Ling, and A. Husband, Int. J. Clin. Pharm. 37, 465 (2015).CrossRefGoogle Scholar
  2. 2.
    M.A. Ward and T.K. Georgiou, Polymers 3, 1215 (2011).CrossRefGoogle Scholar
  3. 3.
    P.C. Horcajada, T. Serre, C. Gillet, B. Sebrie, C. Baati, T. Eubank, J.F. Heurtaux, D. Clayette, P. Kreuz, C. Chang, J.-S. Hwang, Y.K. Marsaud, V. Bories, P.-N. Cynober, L. Gil, S. Ferey, G. Couvreur, and P. Gref, Nat. Mater. 9, 21 (2010).CrossRefGoogle Scholar
  4. 4.
    X. Jia, K. Tian, X. Zhao, T. Zhou, M. Pei, and P. Liu, Mater. Des. 105, 333 (2016).CrossRefGoogle Scholar
  5. 5.
    B. Lu, L. Li, J. Wu, L. Wei, J. Hou, Z. Liu, and X. Guo, New J. Chem. 40, 21 (2016).Google Scholar
  6. 6.
    B.B. Lu, L.L. Wei, G.H. Meng, J. Hou, Z.Y. Liu, and X.H. Guo, Chin. J. Polym. Sci. 35, 924 (2017).CrossRefGoogle Scholar
  7. 7.
    E. Moghimipour, M. Rezaei, Z. Ramezani, M. Kouchak, M. Amini, K.A. Angali, F.A. Dorkoosh, and S. Handali, Eur. J. Pharm. Sci. 114, 166 (2018).CrossRefGoogle Scholar
  8. 8.
    C. Corbo, R. Molinaro, A. Parodi, N.E. Toledano Furman, F. Salvatore, and E. Tasciotti, Nanomedicine 11, 81 (2016).CrossRefGoogle Scholar
  9. 9.
    T.L. Dawson, Color. Technol. 80, 134 (1964).Google Scholar
  10. 10.
    V.M. Thanh, T.H. Nguyen, T.V. Tran, U.P. Ngoc, M.N. Ho, T.T. Nguyen, Y. Chau, V.T. Le, N.Q. Tran, and C.K. Nguyen, Mater. Sci. Eng. C 82, 291 (2018).CrossRefGoogle Scholar
  11. 11.
    M. Alavi, N. Karimi, and M. Safaei, Adv. Pharm. Bull. 7, 3 (2017).CrossRefGoogle Scholar
  12. 12.
    E. Cihan, M. Polat, and H. Polat, Colloids Surf. A 529, 815 (2017).CrossRefGoogle Scholar
  13. 13.
    W. Luo and K.C.C. Chan, IEEE Int. Conf. Bioinf. Biomed. 9, 127 (2011).Google Scholar
  14. 14.
    D.E. Gloriam, S.M. Foord, F.E. Blaney, and S.L. Garland, J. Med. Chem. 52, 4429 (2009).CrossRefGoogle Scholar
  15. 15.
    D.J. Scott and A. Plückthun, J. Mol. Biol. 425, 662 (2013).CrossRefGoogle Scholar
  16. 16.
    H. Lee, E.J. Kim, J.J. Yu, S.W. Shu, Y.H. Ko, J. Park, K.C. Park, and G.L. Hong, Cancer Res. 126, 64 (2004).Google Scholar
  17. 17.
    M. Kumar, P. Mani, P. Pratheesh, S. Chandra, M. Jeyakkodi, P. Chattopadhyay, D.P. Sarkar, and S. Sinha, Curr. Mol. Med. 15, 21 (2015).CrossRefGoogle Scholar
  18. 18.
    Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, and H. Dai, Cancer Res. 68, 6652 (2008).CrossRefGoogle Scholar
  19. 19.
    A. Bianco, K. Kostarelos, and M. Prato, Curr. Opin. Chem. Biol. 9, 674 (2005).CrossRefGoogle Scholar
  20. 20.
    Z. Liu, S. Tabakman, K. Welsher, and H. Dai, Nano. Res. 2, 85 (2009).CrossRefGoogle Scholar
  21. 21.
    R.K. Rana, V.S. Murthy, and M.S. Wong, Adv. Mater. 9, 17 (2010).Google Scholar
  22. 22.
    S. Xu, C. Sun, J. Guo, K. Xu, and C. Wang, J. Mater. Chem. 22, 19067 (2012).CrossRefGoogle Scholar
  23. 23.
    M. Kuno, M. Yousuf, S. Lee, B.L.D. And, and H. Mattoussi, Cheminformatics 34, 5758 (2003).Google Scholar
  24. 24.
    L. Li, B. Lu, Q. Fan, J. Wu, L. Wei, J. Hou, X. Guo, and Z. Liu, RSC Adv. 6, 66 (2016).Google Scholar
  25. 25.
    L. Li, B. Lu, J. Wu, Q. Fan, X. Guo, and Z. Liu, New J. Chem. 40, 4761 (2016).CrossRefGoogle Scholar
  26. 26.
    L. Li, B. Lu, Q. Fan, L. Wei, J. Wu, J. Hou, X. Guo, and Z. Liu, RSC Adv. 6, 27102 (2016).CrossRefGoogle Scholar
  27. 27.
    B. Lu, L. Li, L. Wei, X. Guo, J. Hou, and Z. Liu, RSC Adv. 6, 50993 (2016).CrossRefGoogle Scholar
  28. 28.
    L. Wei, B. Lu, L. Li, J. Wu, Z. Liu, and X. Guo, Front. Mater. Sci. 11, 223 (2017).CrossRefGoogle Scholar
  29. 29.
    X. Yang, B. Li, I. Majeed, L. Liang, X. Long, and B. Tan, Polym. Chem. 4, 1425 (2013).CrossRefGoogle Scholar
  30. 30.
    P. Puthiaraj, Y.R. Lee, S. Zhang, and W.S. Ahn, J. Mater. Chem. A. 4, 42 (2016).CrossRefGoogle Scholar
  31. 31.
    S. Gu, J. He, Y. Zhu, Z. Wang, D. Chen, G. Yu, C. Pan, J. Guan, and K. Tao, ACS Appl. Mater. Interface 8, 18383 (2016).CrossRefGoogle Scholar
  32. 32.
    Q. Liu, Z. Tang, M. Wu, B. Liao, H. Zhou, B. Ou, G. Yu, Z. Zhou, and X. Li, RSC Adv. 5, 8933 (2015).CrossRefGoogle Scholar
  33. 33.
    X. Wang, X. Han, J. Zhang, X. Wu, Y. Liu, and Y. Cui, J. Am. Chem. Soc. 138, 12332 (2017).CrossRefGoogle Scholar
  34. 34.
    G. Liu, J. Sheng, and Y. Zhao, Zhongguo Kexue: Huaxue 1, 8 (2017).Google Scholar
  35. 35.
    G. Garberoglio, Langmuir 23, 12154 (2007).CrossRefGoogle Scholar
  36. 36.
    Q. Fang, Q. Lu, Y. Ma, H. Li, X. Guan, Y. Yusran, M. Xue, Y. Yan, S. Qiu, and V. Valtchev, Angew. Chem. Int. Ed. 1, 5 (2018).Google Scholar
  37. 37.
    S.Y. Ding and W. Wang, Chem. Soc. Rev. 42, 548 (2013).CrossRefGoogle Scholar
  38. 38.
    X. Chen, M. Addicoat, E. Jin, H. Xu, T. Hayashi, F. Xu, N. Huang, S. Irle, and D. Jiang, Sci. Rep. 5, 14650 (2015).CrossRefGoogle Scholar
  39. 39.
    J. Dong, Y. Wang, G. Liu, Y. Cheng, and D. Zhao, CrystEngComm 19, 21 (2017).Google Scholar
  40. 40.
    M.X. Wu and Y.W. Yang, Chin. Chem. Lett. 28, 1135 (2017).CrossRefGoogle Scholar
  41. 41.
    E. Tylianakis, E. Klontzas, and G.E. Froudakis, Nanoscale 3, 856 (2011).CrossRefGoogle Scholar
  42. 42.
    X. Feng, X. Ding, and D. Jiang, Chem. Soc. Rev. 41, 6010 (2012).CrossRefGoogle Scholar
  43. 43.
    A.I. Cooper, CrystEngComm 15, 1483 (2013).CrossRefGoogle Scholar
  44. 44.
    M.L. Banks, B.E. Blough, T.R. Fennell, R.W. Snyder, and S.S. Negus, Drug Alcohol Depend. 130, 158 (2013).CrossRefGoogle Scholar
  45. 45.
    V. Bagalkot, O.C. Farokhza, R. Langera, and S. Jona, Nanomedicine 3, 352 (2007).CrossRefGoogle Scholar
  46. 46.
    P. Liu, R. Zhang, and M. Pei, Colloids Surf. B 160, 455 (2017).CrossRefGoogle Scholar
  47. 47.
    L. Bai, S.Z. Phua, W.Q. Lim, A. Jana, Z. Luo, H.P. Tham, L. Zhao, Q. Gao, and Y. Zhao, Chem. Commun. 52, 4128 (2016).CrossRefGoogle Scholar
  48. 48.
    A. Rengaraj, P. Puthiaraj, Y. Hadorai, N.S. Heo, S.K. Hwang, Y.K. Han, S. Kwon, W.S. Ahn, and Y.S. Huh, ACS Appl. Mater. Interface 8, 8947 (2016).CrossRefGoogle Scholar
  49. 49.
    C.S.L. Dr, J.J. Wang, Z. Chang, L.F. Yan, T.L. Hu, and Z. Anorg, Allg. Chem. 635, 523 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang BingtuanShihezi UniversityShiheziPeople’s Republic of China
  2. 2.School of MedicineShihezi UniversityShiheziPeople’s Republic of China
  3. 3.State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  4. 4.School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang BingtuanShiheziPeople’s Republic of China

Personalised recommendations