Advertisement

JOM

, Volume 71, Issue 2, pp 815–823 | Cite as

Divorced Eutectoid on Heat-Affected Zone of Welded Pearlitic Rails

  • Lucas Pintol NishikawaEmail author
  • Helio Goldenstein
Technical Article
  • 63 Downloads

Abstract

Welds in heavy haul rails are usually associated with accelerated wear and are a common source of defects, justifying a careful study of their characteristics. Heat-affected zones usually present hardness loss, corresponding to a spheroidized cementite region. The literature acknowledges that this is a consequence of the welding heat input but without further explanations. However, in order to control this loss, the mechanisms of microstructural changes need to be fully understood. This paper clarifies the mechanisms for the formation of the spheroidized region in the heat-affected zone of pearlitic welded rails, using as an example a flash butt-welded rail. The weld surroundings had its microstructure characterized and the correspondent hardness measured. Those microstructures were then simulated using a quenching dilatometer for three different rails. The results make it clear that the spheroidized microstructure is a consequence of the divorced eutectoid transformation, which is at a maximum at the end of the eutectoid gap.

Notes

Acknowledgements

The authors are grateful for discussions with Amilton Sinátora, André Paulo Tschitschin and Luiz Henrique Dias Alves, for the help of Dany Michell Andrade Centeno on obtaining SEM images and Vale (Wheel-Rail Chair), CAPES and CNPq for financially supporting this work.

References

  1. 1.
    G. Girsch, J. Keichel, R. Gehrmann, A. Zlatnik, and N. Frank, in IHHA Conference, ShanghaiGoogle Scholar
  2. 2.
    P. Mutton, J. Cookson, C. Qiu, and D. Welsby, Wear 366, 368 (2016).CrossRefGoogle Scholar
  3. 3.
    K. Saita, K. Karimine, M. Ueda, K. Iwano, T. Yamamoto, and K. Hiroguchi, Nippon Steel Sumitomo Met. Tech. Rep. 105, 84 (2013).Google Scholar
  4. 4.
    M.J.M.M. Steenbergen and R.W. Van Bezooijen, in Wheel–Rail Interface Handbook (Elsevier, Amsterdam, 2009), p. 377Google Scholar
  5. 5.
    G. Krauss, Steels: Processing, Structure, and Performance (ASM International, Almere, 2015)Google Scholar
  6. 6.
    M. Fujii, H. Nakanowatari, and K. Nariai, JFE Tech. Rep. 20, 159 (2015).Google Scholar
  7. 7.
    P. Payson, W. L. Hodapp, and J. Leeder, Trans. Am. Soc. Met. 28, 306 (1940).Google Scholar
  8. 8.
    T. Oyama, O. D. Sherby, J. Wadsworth, and B. Walser, Scr. Metall. 18, 799 (1984).CrossRefGoogle Scholar
  9. 9.
    J. D. Verhoeven and E. D. Gibson, Metall. Mater. Trans. A 29, 1181 (1998).CrossRefGoogle Scholar
  10. 10.
    K. Ankit, R. Mukherjee, and B. Nestler, Acta Mater. 97, 316 (2015).CrossRefGoogle Scholar
  11. 11.
    A.P. Tschiptschin, in 36 Congresso Anual da Associação Brasileira de Metais, Rio de JaneiroGoogle Scholar
  12. 12.
    K. Honda and S. Saito, J. Iron Steel Inst. 102, 261 (1920).Google Scholar
  13. 13.
    G. Speich and A. Szirmae, Trans. Met. Soc. AIME 245, 1063 (1969).Google Scholar
  14. 14.
    J. Cunningham, D. Medlin, and G. Krauss, J. Mater. Eng. Perform. 8, 401 (1999).CrossRefGoogle Scholar
  15. 15.
    T. Nakano, H. Kawatani, and S. Kinoshita, Trans. Iron Steel Inst. Jpn. 17, 110 (1977).Google Scholar
  16. 16.
    G.-H. Zhang, J.-Y. Chae, K.-H. Kim, and D. W. Suh, Mater. Charact. 81, 56 (2013).CrossRefGoogle Scholar
  17. 17.
    G. Molinder, Acta Metall. 4, 565 (1956).CrossRefGoogle Scholar
  18. 18.
    M. Hillert, K. Nilsson, and L.-E. Törndahl, J. Iron Steel Inst. 209, 49 (1971).Google Scholar
  19. 19.
    M. Gouné, P. Maugis, and J. Drillet, J. Mater. Sci. Technol. 28, 728 (2012).CrossRefGoogle Scholar
  20. 20.
    N. V. Luzginova, L. Zhao, and J. Sietsma, Metall. Mater. Trans. A 39, 513 (2008).CrossRefGoogle Scholar
  21. 21.
    A.S. Pandit and H.K.D.H. Bhadeshia, in Proc. R. Soc. A, vol. 468 (The Royal Society), p. 2767.Google Scholar
  22. 22.
    D. Tawfik, P.J. Mutton, and W.K. Chiu, J. Mater. Process. Technol., 196, 279 (2008).CrossRefGoogle Scholar
  23. 23.
    C.-M. Li, F. Sommer, and E.J. Mittemeijer, Z. Metallkd., 92, 32 (2001).Google Scholar
  24. 24.
    R.R. Porcaro, D.A.P. Lima, G.L. Faria, L.B. Godefroid, and L.C. Cândido, Soldagem Inspeção 22, 59 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Ueda, K. Mastushita, K. Iwano, A. Kobayashi, T. Yamamoto, T. Miyazaki, J. Takahashi, and Y. Kobayashi, Nippon Steel Sumitomo Met. Tech. Rep. 105, 63 (2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Metallurgical and Materials Engineering DepartmentEscola Politécnica da Universidade de São PauloSão PauloBrazil

Personalised recommendations