, Volume 71, Issue 2, pp 809–814 | Cite as

Distribution and Control Mechanism of Al and O Residuals in Ferrotitanium Prepared by Aluminothermic Reduction with Insufficient Al

  • Chu Cheng
  • Zhi-He DouEmail author
  • Ting-An Zhang
  • Yan Liu
  • Li-Ping Niu
Technical Article


With the aim of developing a novel aluminothermic reduction method for preparation of low-oxygen low-aluminum ferrotitanium by multistage deep reduction we studied the effects of the ratio of reductant Al on the occurrence and distribution of Al and O residuals. The results indicated that Al residual was present in the form of Ti3Al and Al2O3 inclusions. O residual in ferrotitanium with Ti content of 21.22–26.2 wt.% was mainly present in the form of Al2O3 inclusions, but in the form of Ti4Fe2O, TiO, and Al2O3 inclusions in ferrotitanium with Ti content of 49.64–55.42 wt.%. With decreasing ratio of reductant Al, the Al content of those two types of ferrotitanium first decreased then increased, while the O content increased. Al residue in the form of intermetallic compound decreased while that in the form of Al2O3 inclusions increased. The content and occurrence state of Al and O residuals can thus be controlled by adjusting the ratio of reduction agent Al.



This research was supported by the National Natural Science Foundation of China (51422403, 51504064), Fundamental Research Funds for the Central Universities (N162505002), and National Basic Research Program of China (973 Program, No. 2013CB632606).

Supplementary material

11837_2018_3212_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (PDF 2142 kb)


  1. 1.
    P. Mrutyunjay, K.P. Raja, C.G. Rakesh, S. Etsuro, and N. Takashi, High Temp. Mater. Process. 29, 495 (2006).Google Scholar
  2. 2.
    C.C. Qi, X.Y. Hua, K.H. Chen, Y.F. Jie, Z.R. Zhou, J.J. Ru, L. Xiong, and K. Gong, J. Miner. Metall. Mater. 1, 68 (2015).Google Scholar
  3. 3.
    X.L. Xin, J. Yang, Y.N. Wang, R.Z. Wang, and W.L. Wang, Ironmak. Steelmak. 234, 43 (2016).Google Scholar
  4. 4.
    P. Minkyu, J. Jungmock, H.J. Kang, and P. Jongjin, ISIJ Int. 535, 53 (2013).Google Scholar
  5. 5.
    Z.H. Dou, T.A. Zhang, J.M. Yao, and L.P. Niu, J. Northeast. Univ. (Nat. Sci.) 1000, 29 (2008).Google Scholar
  6. 6.
    Z.H. Dou, T.A. Zhang, J.M. Yao, X.L. Jiang, L.P. Niu, and J.C. He, Chin. J. Process Eng. 247, 9 (2009).Google Scholar
  7. 7.
    G.Y. Shi, T.A. Zhang, L.P. Niu, and Z.H. Dou, Chin. J. Process Eng. 695, 11 (2011).Google Scholar
  8. 8.
    V.M. Chumarev, A.Y. Dubrovskii, I.P. Pazdnikov, Y.Y. Shurygin, and N.I. Sel’Menskikh, Russ. Metall. 459, 6 (2008).Google Scholar
  9. 9.
    S. Tan, T. Örs, M.K. Aydnol, T. Öztürk, and İ. Karakaya, J. Alloys Compd. 368, 475 (2009).Google Scholar
  10. 10.
    R. Shi, C. Bai, C. Hu, X. Liu, and J. Du, Int. J. Miner. Metall. Mater. 99, 47 (2011).Google Scholar
  11. 11.
    J.H. Du, Z.P. Xi, Q.Y. Li, Z.X. Li, and Y. Tang, Trans. Nonferrous Met. Soc. China 17, 514 (2007).CrossRefGoogle Scholar
  12. 12.
    Q. Huang, X. Wang, M. Jiang, Z. Hu, and C. Yang, Steel Res. Int. 87, 445 (2016).CrossRefGoogle Scholar
  13. 13.
    T.A. Zhang, Z.H. Dou, Z.M. Zhang, Y. Liu, C. Wang, G.Z. Lv, J.C. He, and X.L. Jiang, CN Patent, 104120304B (2016).Google Scholar
  14. 14.
    T.A. Zhang, Z.H. Dou, Z.S. Yin, H.G. Tang, L.P. Niu, Y. Liu, G.Z. Lv, and J.C. He, CN Patent, 101967531A (2011).Google Scholar
  15. 15.
    V.Y. Gertsman and O. Dremailova, J. Mater. Sci. 4490, 41 (2006).Google Scholar
  16. 16.
    M. Dobrescu, S. Dimitriu, and M. Vasilescu, Metal. Int. 73, 16 (2011).Google Scholar
  17. 17.
    C. Wang, N.T. Nuhfer, and S. Sridhar, Metall. Mater. Trans. B 1084, 41 (2010).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education, School of MetallurgyNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations