Advertisement

JOM

, Volume 71, Issue 1, pp 279–284 | Cite as

Transition-Metal Element (Ni, Co)-Doped MgO Microflowers for Electrochemical Biosensor Applications

  • A. Anusiya
  • B. Jansi Rani
  • G. Ravi
  • R. YuvakkumarEmail author
  • S. Ravichandran
  • V. Ganesh
  • B. Saravanakumar
Materials in Nanomedicine and Bioengineering
  • 60 Downloads

Abstract

Detection of uric acid (UA) is a foremost area of research as abnormal increases in its level can be used to diagnose diseases such as gout, renal disorders, and arthritis. Development of efficient test diagnostics to detect UA in human urine is therefore required. In this study, magnesium oxide was prepared via a hydrothermal route. X-ray diffraction analysis revealed formation of amorphous cubic MgO. The transverse optical phonon mode of cubic MgO was confirmed at the zone center at ~ 479 cm−1. Emission peaks observed at 362 nm, 383 nm, 495 nm, and 521 nm showed the high-quality luminescent behavior of the undoped MgO. Scanning electron microscopy images confirmed formation of MgO microflowers. Cyclic voltammetry results confirmed the excellent electrocatalytic ability of Ni/Co-codoped MgO nanostructures. Chronoamperometry (CA) results confirmed that the synthesized Ni/Co-codoped MgO nanostructure possessed good stability under UA. Such transition-metal element-codoped MgO microflowers with improved performance could be suitable as an excellent tool for clinical diagnostics.

Notes

Acknowledgements

This work was supported by UGC Start-Up Research Grant No. F.30-326/2016 (to BSR).

References

  1. 1.
    L. Lu, L. Zhang, X. Zhang, Z. Wu, S. Huan, G. Shen, and R. Yu, Electroanalysis 224, 471 (2010).CrossRefGoogle Scholar
  2. 2.
    B.M. Choudary, R.S. Mulukutla, and K.J. Klabunde, J. Am. Chem. Soc. 125, 2020 (2003).CrossRefGoogle Scholar
  3. 3.
    S. Stankic, M. Muller, O. Diwald, M. Sterrer, E. Knozinger, and J. Bernardi, Angew. Chem. Int. Ed. 44, 4917 (2005).CrossRefGoogle Scholar
  4. 4.
    K. Zhang, Y. An, L. Zhang, and Q. Dong, Chemosphere 89, 1414 (2012).CrossRefGoogle Scholar
  5. 5.
    L. Huang, D.Q. Li, Y.J. Lin, M. Wei, D.G. Evans, and X. Duan, J. Inorg. Biochem. 99, 986 (2005).CrossRefGoogle Scholar
  6. 6.
    G. Palanisamy and T. Pazhanivel, Int. Res. J. Eng. Technol. 4, 137 (2017).Google Scholar
  7. 7.
    F.T. Javazmi, M.S. Nooshabadi, and H.K. Maleh, Talanta 176, 208 (2018).CrossRefGoogle Scholar
  8. 8.
    T. Kangkamano, A. Numnuam, W. Limbut, P. Kanatharana, T. Vilaivan, and P. Thavarungkul, Biosens. Bioelectron. 102, 217 (2018).CrossRefGoogle Scholar
  9. 9.
    F. Hosseini, M. Ebrahimi, and H. Karimi-Maleh, Int. J. Electrochem. Sci. 13, 4923 (2018).CrossRefGoogle Scholar
  10. 10.
    R. Thirupathi, G. Solleti, T. Sreekanth, K.K. Sadasivuni, and K.V. Rao, J. Electron. Mater. 47, 3468 (2018).CrossRefGoogle Scholar
  11. 11.
    L. Ge, W. Wang, Z. Peng, F. Tan, X. Wang, J. Chen, and X. Qiao, Powder Technol. 326, 393 (2018).CrossRefGoogle Scholar
  12. 12.
    A. Soltani, M.R. Taghartapeh, M.B. Javan, P.J. Mahon, Z. Azmoodeh, E.T. Lemeski, and I.V. Kityk, Physica E: Low-Dimensional Syst. Nanostruct. 97, 239 (2018).CrossRefGoogle Scholar
  13. 13.
    M. Jayapriya, M. Arulmozhi, and B. Balraj, Ceram. Int. 44, 13152 (2018).CrossRefGoogle Scholar
  14. 14.
    S.H. El-Moslamy, Sci. Rep. 8, 3820 (2018).CrossRefGoogle Scholar
  15. 15.
    C.H. Kao, C.L. Chang, W.M. Su, Y.T. Chen, C.C. Lu, Y.S. Lee, C.H. Hong, C.Y. Lin, and H. Chen, Sci. Rep. 7, 7185 (2017).CrossRefGoogle Scholar
  16. 16.
    R. Gui, H. Jin, H. Guo, and Z. Wang, Biosens. Bioelectron. 100, 56 (2018).CrossRefGoogle Scholar
  17. 17.
    P.D. Kale, A.B. Bodade, and G.N. Chaudhari, J. Biomed. Pharm. Res. 6, 9 (2017).Google Scholar
  18. 18.
    M. Ashjari, H.K. Maleh, F. Ahmadpour, M.S. Nooshabadi, A. Sadrnia, and M.A. Khalilzadeh, J. Taiwan Inst. Chem. Eng. 80, 989 (2017).CrossRefGoogle Scholar
  19. 19.
    A. Chen, Y. Yu, Y. Li, Y. Li, and M. Jia, Mater. Lett. 164, 520 (2016).CrossRefGoogle Scholar
  20. 20.
    W. Cui, P. Li, Z. Wang, S. Zheng, and Y. Zhang, J. Hazard. Mater. 341, 268 (2018).CrossRefGoogle Scholar
  21. 21.
    T. Uchino, D. Okutsu, R. Katayama, and S. Sawai, Phys. Rev. B 79, 165107 (2009).CrossRefGoogle Scholar
  22. 22.
    C.M. Boubeta, A. Martínez, S. Hernándeza, P. Pellegrino, A. Antonyb, J. Bertomeub, L. Balcells, Z. Konstantinović, and B. Martínez, Solid State Commun. 151, 751 (2011).CrossRefGoogle Scholar
  23. 23.
    P.B. Devaraja, D.N. Avadhani, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, and H.P. Nagaswarupa, Spectrochim. Acta. A. 118, 847 (2014).CrossRefGoogle Scholar
  24. 24.
    B. Choudhury and A. Choudhury, Mater. Res. Express 1, 025026 (2014).CrossRefGoogle Scholar
  25. 25.
    F. Bertram, D. Forster, J. Christen, N. Oleynik, A. Dadgar, and A. Krost, Appl. Phys. Lett. 85, 1976 (2004).CrossRefGoogle Scholar
  26. 26.
    V. Ischenko, S. Polarz, D. Grote, V. Stavarache, K. Fink, and M. Driess, Adv. Funct. Mater. 15, 1945 (2005).CrossRefGoogle Scholar
  27. 27.
    N. Marwaha, B.K. Gupta, R. Verma, and A.K. Srivastava, J. Mater. Sci. 52, 10480 (2017).CrossRefGoogle Scholar
  28. 28.
    A.A. Al-Ghamdi, F. Al-Hazmi, F. Alnowaiser, R.M. Al-Tuwirqi, A.A. Al-Ghamdi, O.A. Alhartomy, F. El-Tantawy, and F.J. Yakuphanoglu, Electroceramics 29, 198 (2012).CrossRefGoogle Scholar
  29. 29.
    B.J. Rani, S.P. Raj, B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, and R. Yuvakkumar, Int. J. Hydrog. Energy 42, 29666 (2017).CrossRefGoogle Scholar
  30. 30.
    A.H. Chowdhury, I.H. Chowdhury, and M.K. Naskar, Mater. Lett. 158, 190 (2015).CrossRefGoogle Scholar
  31. 31.
    K.Y. Chew, M. Abu Bakar, and N.H.H. Abu Bakar, AIP Conf. Proc. 1502, 348 (2012).CrossRefGoogle Scholar
  32. 32.
    M. Caglar, S. Ilican, and Y. Caglar, Thin Solid Films 517, 5023 (2009).CrossRefGoogle Scholar
  33. 33.
    H. Gomez, J.L. Gonzalez, G.A. Torres, A. Maldonado, and M. de la L. Olvera,  https://doi.org/10.1109/iceee.2012.6421185.
  34. 34.
    M. Li, W. Guo, H. Li, W. Dai, and B. Yang, Sens. Actuators B-Chem. 204, 629 (2014).CrossRefGoogle Scholar
  35. 35.
    J. Beheshtian, A.A. Peyghan, and Z. Bagheri, Struct. Chem. 24, 165 (2013).CrossRefGoogle Scholar
  36. 36.
    M.U.A. Prathap and R. Srivastava, Sens. Actuators B Chem. 177, 239 (2013).CrossRefGoogle Scholar
  37. 37.
    R. Suresh, K. Giribabu, R. Manigandan, A. Stephen, and V. Narayanan, RSC Adv. 4, 17146 (2014).CrossRefGoogle Scholar
  38. 38.
    X.Y. Lang, H.Y. Fu, C. Hou, G.F. Han, P. Yang, Y.B. Liu, and Q. Jiang, Nat. Commun. 4, 2169 (2013).CrossRefGoogle Scholar
  39. 39.
    A. Umar, M.M. Rahman, and Y.B. Hahn, Electrochem. Commun. 11, 1353 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • A. Anusiya
    • 1
  • B. Jansi Rani
    • 1
  • G. Ravi
    • 1
  • R. Yuvakkumar
    • 1
    Email author
  • S. Ravichandran
    • 2
  • V. Ganesh
    • 3
  • B. Saravanakumar
    • 4
  1. 1.Nanomaterials Laboratory, Department of PhysicsAlagappa UniversityKaraikudiIndia
  2. 2.Electro Inorganic DivisionCSIR–Central Electrochemical Research Institute (CSIR–CECRI)KaraikudiIndia
  3. 3.Electrodics and Electrocatalysis (EEC) DivisionCSIR–Central Electrochemical Research Institute (CSIR–CECRI)KaraikudiIndia
  4. 4.Department of Organic Materials and Fiber EngineeringChonbuk National UniversityJeonjuSouth Korea

Personalised recommendations