Advertisement

JOM

, Volume 71, Issue 2, pp 718–728 | Cite as

Computational Analysis of Thermo-Mechanical Fields in Hot Roll Bonding of Aluminum Validated by Experiments

  • Brigit MittelmanEmail author
  • Gilad M. Guttmann
  • Elad Priel
Technological Innovations in Metals Engineering
  • 31 Downloads

Abstract

Roll bonding is extensively used in various industries for obtaining engineering components comprising several metallic layers. The load-bearing ability of such components strongly depends on the interface bonding strength between these layers. Nevertheless, the relation between the thermo-mechanical fields that develop at the interface during rolling and the resulting bonding strength is still not clearly defined. The current study presents a coupled thermo-mechanical computational investigation of a hot roll bonding process of aluminum plates validated by experiments. A novel experimental rolling configuration proposed in this study enables evaluating the interface strength by subsequent three-point bending tests. The rolling models were used for analyzing the time-dependent thermo-mechanical fields that develop at the interface for different reduction ratios. It is demonstrated that a 2D FE representation is not sufficient to accurately describe the interface conditions and a 3D analysis must be used. The computed fields in the deformation zone examined the bonding strength using a previously published bonding strength criterion for solid state bonding in bridge die extrusion.

Notes

Acknowledgements

The authors would like to thank M. Nahmany and Y. Benishti for assisting with specimen preparation and Y. Hadad, Y. Tzriker, and D. Hai David for assisting with the rolling experiments.

References

  1. 1.
    P. Cavaliere, Cold Spray Coatings: Recent Trends and Future Perspectives (New York: Springer, 2018).CrossRefGoogle Scholar
  2. 2.
    C. Ranganayakulu and K. Seetharamu, Compact Heat Exchangers: Analysis, Design and Optimization using FEM and CFD Approach (New York: Wiley, 2018).Google Scholar
  3. 3.
    A. Lyons, Materials for Architects and Builders (New York: Taylor & Francis, 2010).Google Scholar
  4. 4.
    J. Davis, ASM Specialty Handbook: Aluminium and Aluminium Alloys (Ohio: ASM International, 1993).Google Scholar
  5. 5.
    E. Priel, Z. Ungarish, and N.U. Nissim, J. Mater. Process. Technol. 236, 103 (2016).CrossRefGoogle Scholar
  6. 6.
    G. Hirt and S. Senge, Proc. Eng. 81, 18 (2014).CrossRefGoogle Scholar
  7. 7.
    N. Kazakov, Diffusion Bonding of Materials (New York: Pergamon Press, 1985).Google Scholar
  8. 8.
    L. Li, K. Nagai, and F. Yin, Sci. Technol. Adv. Mater. 9, 023001 (2008).CrossRefGoogle Scholar
  9. 9.
    G. Chen, J. Li, H. Yu, L.H. Su, G.M. Xu, J. Pan, T. You, G. Zhang, K.M. Sun, and L. He, Mater. Des. 112, 263 (2016).CrossRefGoogle Scholar
  10. 10.
    I. Topic, H. W. Hoppe, D. Staud, M. Merklein, M. Geiger, and M. Goken, Adv. Eng. Mater. 10, 1101 (2008)CrossRefGoogle Scholar
  11. 11.
    E. Kim, J. Cho, H. Kim, and S. Choi, Mater. Sci. Eng., A 530, 244 (2011).CrossRefGoogle Scholar
  12. 12.
    T. Inoue, A. Yanagida, and J. Yanagimoto, Mater. Lett. 106, 37 (2013).CrossRefGoogle Scholar
  13. 13.
    R. Kebriaei, I. Vladimirov, and S. Reese, J. Mater. Process. Technol. 214, 2146 (2014).CrossRefGoogle Scholar
  14. 14.
    T. Altan, G. Ngaile, and G. Shen, Cold and Hot Forging: Fundamentals and Applications (Ohio: ASM International, 2005).Google Scholar
  15. 15.
    O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method: Solid Mechanics, Vol. 2 (London: Butterworth Heinmann, 2000).zbMATHGoogle Scholar
  16. 16.
    COMSOL Multiphysics (R) V. 5.2 www.comsol.com. COMSOL AB, Stockholm, Sweden
  17. 17.
    H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion Controlled Processes (New York: Springer, 2007).CrossRefGoogle Scholar
  18. 18.
    M. Plata and J. Piwnik, in Proceedings of the 7th International Aluminium Extrusion Technology Seminar ET I, p. 205 (2000)Google Scholar
  19. 19.
    E. Cerretti, L. Mazzoni, and C. Giardini, Int. J. Metal Form. 2, 101 (2009).CrossRefGoogle Scholar
  20. 20.
    S. Bingol and A. Bozaci, Materials 8, 4389 (2015).CrossRefGoogle Scholar
  21. 21.
    J. Kim, D. Jo, and B. Kim, Proc. Eng. 207, 586 (2017)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Brigit Mittelman
    • 1
    • 2
    Email author
  • Gilad M. Guttmann
    • 1
  • Elad Priel
    • 2
    • 3
  1. 1.Department of Materials EngineeringNRCNBeer-ShevaIsrael
  2. 2.Department of Mechanical Engineering - Center for Thermo-Mechanics and Failure of Materials (CTMFM)Shamoon College of EngineeringBeer-ShevaIsrael
  3. 3.Rotem Industries - LtdMishor YeminIsrael

Personalised recommendations