Advertisement

JOM

, Volume 71, Issue 1, pp 302–307 | Cite as

Synthesis and Bioactivity Evaluation of a Rice Husk-Derived Bioactive Glass

  • Lindsey Alejandra Quintero SierraEmail author
  • Diana Marcela Escobar Sierra
Materials in Nanomedicine and Bioengineering
  • 56 Downloads

Abstract

Bioactive glasses have been widely used for bone replacement due to their biological properties. Such materials have recently been synthesized using a sol–gel process, but the expensive reagents represent a major disadvantage of this approach. To overcome this issue, rice husk ash is proposed herein as a cost-free silica source. SiO2–CaO–P2O5 bioactive glass was synthesized by a sol–gel route using rice husk as the silica precursor, then its bioactive behavior in simulated body fluid (SBF) solution was evaluated at 7 days and 14 days. The synthesized bioactive glass was evaluated before and after exposure to SBF using x-ray diffraction analysis, infrared spectroscopy, and microscopy. Furthermore, fluorescence, Raman, and density measurements were carried out to complete the characterization. The results showed that the glass synthesized using silica from rice husk exhibited bioactivity, inducing apatite formation with a Ca/P ratio similar to that of bone, indicating potential use as a biomaterial.

Notes

Acknowledgements

The authors thank Biomaterials Research Group and Gimacyr Research Group for their help during BG synthesis.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    U.S. Department of Health & Human Services, “Tissue Engineering and Regenerative Medicine,” National Institute of Biomedical Imaging and Bioengineering, Creating Biomedical Technologies to Improve Health, 2014 [Online]. http://www.nibib.nih.gov/science-education/science-topics/tissue-engineering-and-regenerative-medicine. Accessed 17 Feb 2016.
  2. 2.
    M.N. Rahaman, D.E. Day, B. Sonny Bal, Q. Fu, S.B. Jung, L.F. Bonewald, and A.P. Tomsia, Acta Biomater. 7, 2355 (2011).CrossRefGoogle Scholar
  3. 3.
    C. Estrada, A.C. Paz, and L.E. López, Rev. EIA 5, 93 (2006).Google Scholar
  4. 4.
    R. López, Producción de Materiales Híbridos Bioreabsorbibles Para La Regeneración Ósea (Valencia: Universitat Politècnica de València, 2014).Google Scholar
  5. 5.
    T. Kokubo and H. Takadama, Handb. Biominer. Biol. Asp. Struct. Form. 3, 97 (2008).Google Scholar
  6. 6.
    L.L. Hench, J. Mater. Sci. Mater. Med. 17, 967 (2006).CrossRefGoogle Scholar
  7. 7.
    J.R. Jones, Acta Biomater. 9, 4457 (2013).CrossRefGoogle Scholar
  8. 8.
    K. Zheng and A.R. Boccaccini, Adv. Colloid Interface Sci. 249, 363 (2017).CrossRefGoogle Scholar
  9. 9.
    H.C. Li, D.G. Wang, J.H. Hu, and C.Z. Chen, Mater. Sci. Eng. C 35, 171 (2014).CrossRefGoogle Scholar
  10. 10.
    M. Catauro, F. Bollino, R.A. Renella, and F. Papale, Ceram. Int. 41, 12578 (2015).CrossRefGoogle Scholar
  11. 11.
    C. Brinker and G. Scherer, Adv. Mater. 3, 912 (1990).Google Scholar
  12. 12.
    M. Catauro, A. Dell’Era, and S. Vecchio Ciprioti, Thermochim. Acta 625, 20 (2016).CrossRefGoogle Scholar
  13. 13.
    J.A. Santana Costa and C.M. Paranhos, J. Clean. Prod. 192, 688 (2018).CrossRefGoogle Scholar
  14. 14.
    V.S. Aigbodion, S.B. Hassan, T. Ause, and G.B. Nyior, J. Miner. Mater. Charact. Eng. 9, 67 (2010).Google Scholar
  15. 15.
    P.B. Madakson, D.S. Yawas, and A. Apasi, Int. J. Eng. Sci. Technol. 4, 1190 (2012).Google Scholar
  16. 16.
    R.A. Bakar, R. Yahya, and S.N. Gan, Proc. Chem. 19, 189 (2016).CrossRefGoogle Scholar
  17. 17.
    R. Pode, Renew. Sustain. Energy Rev. 53, 1468 (2016).CrossRefGoogle Scholar
  18. 18.
    H.M.H. Gad, M.M. Hamed, H.M.M. Abo Eldahab, M.E. Moustafa, and S.A. El-Reefy, J. Mol. Liq. 231, 45 (2017).CrossRefGoogle Scholar
  19. 19.
    S.K. Hubadillah, M.H.D. Othman, A.F. Ismail, M.A. Rahman, J. Jaafar, Y. Iwamoto, S. Honda, M.I.H.M. Dzahir, and M.Z.M. Yusop, Ceram. Int. 44, 10498 (2018).CrossRefGoogle Scholar
  20. 20.
    A.A. Alshatwi, J. Athinarayanan, and V.S. Periasamy, Mater. Sci. Eng. C 47, 8 (2015).CrossRefGoogle Scholar
  21. 21.
    L.A. Quintero and D.M. Escobar, in Proceedings of 3rd Pan American Materials Congress (Springer, 2017), pp. 11–19.Google Scholar
  22. 22.
    T. Kokubo and H. Takadama, Biomaterials 27, 2907 (2006).CrossRefGoogle Scholar
  23. 23.
    F. Naghizadeh, M.R. Abdul Kadir, A. Doostmohammadi, F. Roozbahani, N. Iqbal, M.M. Taheri, S.V. Naveen, and T. Kamarul, J. Non Cryst. Solids 427, 54 (2015).CrossRefGoogle Scholar
  24. 24.
    J. Faure, R. Drevet, A. Lemelle, N. Ben Jaber, A. Tara, H. El Btaouri, and H. Benhayoune, Mater. Sci. Eng. C 47, 407 (2015).CrossRefGoogle Scholar
  25. 25.
    R.M.S. Virajini, V.P.S. Perera, and J.C.N. Rajendra, in Proceedings of the Annual Academic Sessions of the Open University of Sri Lanka (2013), pp. 382–386.Google Scholar
  26. 26.
    M. Catauro, F. Bollino, F. Papale, M. Gallicchio, and S. Pacifico, J. Drug Deliv. Sci. Technol. 24, 320 (2014).CrossRefGoogle Scholar
  27. 27.
    M. Dziadek, B. Zagrajczuk, E. Menaszek, A. Wegrzynowicz, J. Pawlik, and K. Cholewa-Kowalska, Ceram. Int. 42, 5842 (2016).CrossRefGoogle Scholar
  28. 28.
    L. Desogus, A. Cuccu, S. Montinaro, R. Orrù, G. Cao, D. Bellucci, A. Sola, and V. Cannillo, J. Eur. Ceram. Soc. 35, 4277 (2015).CrossRefGoogle Scholar
  29. 29.
    I. Atkinson, E.M. Anghel, L. Predoana, O.C. Mocioiu, L. Jecu, I. Raut, C. Munteanu, D. Culita, and M. Zaharescu, Ceram. Int. 42, 3033 (2016).CrossRefGoogle Scholar
  30. 30.
    D. Bellucci, G. Bolelli, V. Cannillo, A. Cattini, and A. Sola, Mater. Charact. 62, 1021 (2011).CrossRefGoogle Scholar
  31. 31.
  32. 32.
    P. Zioupos, R.B. Cook, and J.R. Hutchinson, J. Biomech. 41, 1961 (2008).CrossRefGoogle Scholar
  33. 33.
    S. Wu, X. Liu, K.W.K. Yeung, C. Liu, and X. Yang, Mater. Sci. Eng. R Rep. 80, 1 (2014).CrossRefGoogle Scholar
  34. 34.
    W. M. Saltzman, in Biomedical Engineering: Bridging Medicine and Technology, First (Cambridge University Press, 2009), p. 656.Google Scholar
  35. 35.
    G.M. Luz, L. Boesel, A. Del Campo, and J.F. Mano, Langmuir 28, 6970 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Biomaterials Research Group, Engineering FacultyUniversity of AntioquiaMedellínColombia
  2. 2.Head of Biomaterials Research Group, Engineering FacultyUniversity of AntioquiaMedellínColombia

Personalised recommendations