, Volume 71, Issue 1, pp 294–301 | Cite as

Cytotoxicity of Bacteriostatic Reduced Graphene Oxide-Based Copper Oxide Nanocomposites

  • Xiangyang Xu
  • Jing Shen
  • Jingyu Qin
  • Huimin Duan
  • Guangyu He
  • Haiqun ChenEmail author
Materials in Nanomedicine and Bioengineering


An antibacterial nanocomposite, reduced graphene oxide-based copper oxide (CuO-RGO), was prepared by a one-step hydrothermal method and characterized by x-ray diffraction analysis, infrared absorption spectroscopy, scanning electron microscopy, transmission electron microscopy, and photoluminescence measurements, revealing CuO nanoparticles with diameter of about 26 nm uniformly anchored on graphene sheets. Compared with recently reported bacteriostatic agents, much less CuO-RGO is required and better bacteriostatic effect is achieved, with good stability. The minimum inhibitory concentration of the CuO-RGO composite against Escherichia coli reached 240 μg mL−1. The antibacterial rate remained at 89% after five cycles. In addition, introduction of graphene inhibited leaching of Cu2+, which reduces the cytotoxicity of CuO-RGO to mouse fibroblast L929.



The authors are grateful for financial support from the National Nature Science Foundation of China (Nos. 51572036, 51472035), Science and Technology Department of Jiangsu Province (BY2015027-18, BY2016029-12), Changzhou Key Laboratory of Graphene-Based Materials for Environment and Safety (CE20160001-2, CM20153006), and PAPD of Jiangsu Higher Education Institution.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    D. Das, B.C. Nath, P. Phukon, and S.K. Dolui, Colloids Surf. B 101, 430 (2013).CrossRefGoogle Scholar
  2. 2.
    M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. de Aberasturi, I.R. de Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, and M. Mahmoudi, Trends Biotechnol. 30, 499 (2012).CrossRefGoogle Scholar
  3. 3.
    H.A. Jeng and J. Swanson, J. Environ. Sci. Health Part A Toxic Hazard. Subst. Environ. Eng. 41, 2699 (2006).CrossRefGoogle Scholar
  4. 4.
    S. Kim, J.E. Choi, J. Choi, K.H. Chung, K. Park, J. Yi, and D.Y. Ryu, Toxicol. In Vitro 23, 1076 (2009).CrossRefGoogle Scholar
  5. 5.
    T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, and A.E. Nel, ACS Nano 2, 2121 (2008).CrossRefGoogle Scholar
  6. 6.
    H. Zhang, Z. Ji, T. Xia, H. Meng, C. Lowkam, R. Liu, S. Pokhrel, S. Lin, X. Wang, and Y.P. Liao, ACS Nano 6, 4349 (2012).CrossRefGoogle Scholar
  7. 7.
    R. Bhattacharya and P. Mukherjee, Adv. Drug Deliv. Rev. 60, 1289 (2008).CrossRefGoogle Scholar
  8. 8.
    Y.W. Baek and Y.J. An, Sci. Total Environ. 409, 1603 (2011).CrossRefGoogle Scholar
  9. 9.
    M. Pandurangan and D.H. Kim, J. Nanopart. Res. 17, 1 (2015).CrossRefGoogle Scholar
  10. 10.
    L.C. Wehmas, C. Anders, J. Chess, A. Punnoose, C.B. Pereira, J.A. Greenwood, and R.L. Tanguay, Toxicol. Rep. 2, 702 (2015).CrossRefGoogle Scholar
  11. 11.
    T. Xu, H. Lei, S.Z. Cai, X.P. Xia, and C.S. Xie, Contraception 70, 153 (2004).CrossRefGoogle Scholar
  12. 12.
    H.L. Karlsson, P. Cronholm, J. Gustafsson, and L. Möller, Chem. Res. Toxicol. 21, 1726 (2008).CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, Y. Xu, X. Xi, S. Shrestha, P. Jiang, W. Zhang, and C. Gao, J. Mater. Chem. B. 5, 3521 (2017).CrossRefGoogle Scholar
  14. 14.
    T. Jan, J. Iqbal, Q. Mansoor, M. Ismail, M.S.H. Naqvi, A. Gul, S.F.U.H. Naqvi, and F. Abbas, J. Phys. D Appl. Phys. 47, 355301 (2014).CrossRefGoogle Scholar
  15. 15.
    H. Naatz, S. Lin, R. Li, W. Jiang, Z. Ji, C.H. Chang, J. Koser, J. Thoming, T. Xia, A.E. Nel, L. Madler, and S. Pokhrel, ACS Nano 11, 501 (2017).CrossRefGoogle Scholar
  16. 16.
    A. Regiel, S. Irusta, A. Kyziol, M. Arruebo, and J. Santamaria, Nanotechnology 24, 015101 (2013).CrossRefGoogle Scholar
  17. 17.
    S. Agnihotri, S. Mukherji, and S. Mukherji, Nanoscale 5, 7328 (2013).CrossRefGoogle Scholar
  18. 18.
    R. Kumar, R.K. Singh, D.P. Singh, E. Joanni, R.M. Yadav, and S.A. Moshkalev, Coord. Chem. Rev. 342, 34 (2017).CrossRefGoogle Scholar
  19. 19.
    C. Dong, J. Lu, B. Qiu, B. Shen, M. Xing, and J. Zhang, Appl. Catal. B 222, 146 (2018).CrossRefGoogle Scholar
  20. 20.
    S. Sohrabnezhad, M.J. Mehdipour Moghaddam, and T. Salavatiyan, Spectrochim. Acta Part A 125, 73 (2014).CrossRefGoogle Scholar
  21. 21.
    X. Zhang, W. Wang, Y. Zhang, T. Zeng, C. Jia, and L. Chang, Colloids Surf. B 161, 433 (2017).CrossRefGoogle Scholar
  22. 22.
    G. He, H. Wu, K. Ma, L. Wang, X. Sun, H. Chen, and X. Wang, Synth. React. Inorg. Metal Org. Nano Metal Chem. 43, 440 (2013).CrossRefGoogle Scholar
  23. 23.
    G. He, J. Li, H. Chen, J. Shi, X. Sun, S. Chen, and X. Wang, Mater. Lett. 82, 61 (2012).CrossRefGoogle Scholar
  24. 24.
    R. Xu, H. Bi, G. He, J. Zhu, and H. Chen, Mater. Res. Bull. 57, 190 (2014).CrossRefGoogle Scholar
  25. 25.
    S.T. Yang, Y. Chang, H. Wang, G. Liu, S. Chen, Y. Wang, Y. Liu, and A. Cao, J. Colloid Interface Sci. 351, 122 (2010).CrossRefGoogle Scholar
  26. 26.
    C.H. Deng, J.L. Gong, G.M. Zeng, P. Zhang, B. Song, X.G. Zhang, H.Y. Liu, and S.Y. Huan, Chemosphere 184, 347 (2017).CrossRefGoogle Scholar
  27. 27.
    H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace, and D. Li, Adv. Mater. 20, 3557 (2008).CrossRefGoogle Scholar
  28. 28.
    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  29. 29.
    G.Y. He, W. Dai, Y.T. Zhao, Q. Chen, X.Q. Sun, H.Q. Chen, and X. Wang, Mon. Chem. 145, 3 (2014).CrossRefGoogle Scholar
  30. 30.
    W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
  31. 31.
    T. Mosmann, J. Immunol. Methods 65, 55 (1983).CrossRefGoogle Scholar
  32. 32.
    A. Liu, Y. Bai, Y. Liu, M. Zhao, J. Mu, C. Wu, X. Zhang, G. Wang, and H. Che, Mater. Res. Bull. 84, 85 (2016).CrossRefGoogle Scholar
  33. 33.
    Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 3906 (2010).CrossRefGoogle Scholar
  34. 34.
    W. Zhang, Q. Yao, X. Wu, Y. Fu, K. Deng, and X. Wang, Electrochim. Acta 200, 131 (2016).CrossRefGoogle Scholar
  35. 35.
    Y. Fu, H. Chen, X. Sun, and X. Wang, App. Catal. B 111–112, 280 (2012).CrossRefGoogle Scholar
  36. 36.
    G. He, L. Wang, H. Chen, X. Sun, and X. Wang, Mater. Lett. 98, 164 (2013).CrossRefGoogle Scholar
  37. 37.
    Q. Qiu, Y. Chen, J. Xue, J. Zhu, Y. Fu, G. He, and H. Chen, Ceram. Int. 43, 2226 (2017).CrossRefGoogle Scholar
  38. 38.
    S. Sonia, N.D. Jayram, P.S. Kumar, D. Mangalaraj, N. Ponpandian, and C. Viswanathan, Superlattices Microstruct. 66, 1 (2014).CrossRefGoogle Scholar
  39. 39.
    G. Zou, H. Li, D. Zhang, K. Xiong, C. Dong, and Y. Qian, J. Phys. Chem. B. 110, 1632 (2006).CrossRefGoogle Scholar
  40. 40.
    R. Jana, A. Dey, M. Das, J. Datta, P. Das, and P.P. Ray, Appl. Surf. Sci. 452, 155 (2018).CrossRefGoogle Scholar
  41. 41.
    H. Sun, X. Song, M. Xu, Y. Zhang, W. Que, and S. Yang, New J. Chem. 39, 4278 (2015).CrossRefGoogle Scholar
  42. 42.
    M. Ahmad, E. Ahmed, Z.L. Hong, J.F. Xu, N.R. Khalid, A. Elhissi, and W. Ahmed, Appl. Surf. Sci. 274, 273 (2013).CrossRefGoogle Scholar
  43. 43.
    L. Cheng, Y. Wang, D. Huang, T. Nguyen, Y. Jiang, H. Yu, N. Ding, G. Ding, and J. Zheng, Mater. Res. Bull. 61, 409 (2015).CrossRefGoogle Scholar
  44. 44.
    H. Meng, Z. Chen, G. Xing, H. Yuan, C. Chen, F. Zhao, C. Zhang, and Y. Zhao, Toxicol. Lett. 175, 102 (2007).CrossRefGoogle Scholar
  45. 45.
    D. Laha, A. Pramanik, A. Laskar, M. Jana, P. Pramanik, and P. Karmakar, Mater. Res. Bull. 59, 185 (2014).CrossRefGoogle Scholar
  46. 46.
    Y. Si and E.T. Samulski, Nano Lett. 8, 1679 (2008).CrossRefGoogle Scholar
  47. 47.
    Y. Liu, D. Yu, C. Zeng, Z. Miao, and L. Dai, Langmuir 26, 6158 (2010).CrossRefGoogle Scholar
  48. 48.
    W.L. Du, S.S. Niu, Y.L. Xu, Z.R. Xu, and C.L. Fan, Carbohydr. Polym. 75, 385 (2009).CrossRefGoogle Scholar
  49. 49.
    M. Hadidi, A. Bigham, E. Saebnoori, S.A. Hassanzadeh-Tabrizi, S. Rahmati, Z.M. Alizadeh, V. Nasirian, and M. Rafienia, Surf. Coat. Technol. 321, 171 (2017).CrossRefGoogle Scholar
  50. 50.
    Y. Ouyang, X. Cai, Q. Shi, L. Liu, D. Wan, S. Tan, and Y. Ouyang, Colloids Surf. B 107, 107 (2013).CrossRefGoogle Scholar
  51. 51.
    J.H.B. Nunes, R.E.F. de Paiva, A. Cuin, A.M. da Costa Ferreira, W.R. Lustri, and P.P. Corbi, J. Mol. Struct. 1112, 14 (2016).CrossRefGoogle Scholar
  52. 52.
    L. Zhang, Y. Jiang, Y. Ding, N. Daskalakis, L. Jeuken, M. Povey, A.J. O’Neill, and D.W. York, J. Nanopart. Res. 12, 1625 (2010).CrossRefGoogle Scholar
  53. 53.
    A. Katsumiti, A.J. Thorley, I. Arostegui, P. Reip, E. Valsami-Jones, T.D. Tetley, and M.P. Cajaraville, Toxicol. In Vitro 48, 146 (2018).CrossRefGoogle Scholar
  54. 54.
    M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier, and A. Kahru, Chemosphere 71, 1308 (2008).CrossRefGoogle Scholar
  55. 55.
    S. Pourbeyram, R. Bayrami, and H. Dadkhah, Colloids Surf. A 529, 73 (2017).CrossRefGoogle Scholar
  56. 56.
    R.J. Griffitt, R. Weil, K.A. Hyndman, N.D. Denslow, K. Powers, D. Taylor, and D.S. Barber, Environ. Sci. Technol. 41, 8178 (2007).CrossRefGoogle Scholar
  57. 57.
    A. Nel, T. Xia, L. Madler, and N. Li, Science 311, 622 (2006).CrossRefGoogle Scholar
  58. 58.
    A. Yamamoto, R. Honma, M. Sumita, and T. Hanawa, J. Biomed. Mater. Res. Part A 68, 244 (2004).CrossRefGoogle Scholar
  59. 59.
    D. Olteanu, A. Filip, C. Socaci, A.R. Biris, X. Filip, M. Coros, M.C. Rosu, F. Pogacean, C. Alb, I. Baldea, P. Bolfa, and S. Pruneanu, Colloids Surf. B 136, 791 (2015).CrossRefGoogle Scholar
  60. 60.
    Y. Chang, S.-T. Yang, J.-H. Liu, E. Dong, Y. Wang, A. Cao, Y. Liu, and H. Wang, Toxicol. Lett. 200, 201 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou UniversityChangzhouChina

Personalised recommendations