Advertisement

JOM

, Volume 71, Issue 1, pp 69–77 | Cite as

Fluid Flow and Inclusion Behavior Around Spherical-Cap Bubbles

  • Haojian Duan
  • Piotr Roman Scheller
  • Ying RenEmail author
  • Lifeng ZhangEmail author
CFD Modeling and Simulation in Materials Processing

Abstract

The fluid flow and inclusion behavior around a spherical-cap bubble in molten steel is investigated by the computational model in a two-dimensional axisymmetric domain. Discrete phase model is employed to describe the trajectory of inclusion through the flow field around the bubble, and a stochastic tracking model is adopted to account for the dispersion of inclusions due to turbulence. Increasing the level of turbulence kinetic energy causes the effective attachment radius and the overall attachment probability to increase. Larger inclusions have a larger attachment probability. The wake region grows larger as the turbulence becomes weaker. The entrapment of inclusions by the bubble wake is also considered and the entrapment probability is calculated.

Notes

Acknowledgements

The authors are grateful for support from the National Science Foundation China (Grant Nos. 51725402 and 51504020), the Fundamental Research Funds for the Central Universities (Grant Nos. FRF-TP-15-001C2 and 2015021642901), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and the High Quality steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

References

  1. 1.
    A.V. Nguyen, J. Ralston, and H.J. Schulze, Int. J. Miner. Process. 53, 225 (1998).CrossRefGoogle Scholar
  2. 2.
    L. Zhang and S. Taniguchi, Int. Mater. Rev. 45, 59 (2000).CrossRefGoogle Scholar
  3. 3.
    H.J. Schulze, Miner. Process. Extr. Met. Rev. 5, 43 (1989).CrossRefGoogle Scholar
  4. 4.
    A.V. Nguyen, Int. J. Miner. Process. 37, 1 (1993).CrossRefGoogle Scholar
  5. 5.
    M. Soder, P. Jonsson, and L. Jonsson, Steel Res. Int. 75, 128 (2004).CrossRefGoogle Scholar
  6. 6.
    L. Zhang, J. Aoki, and B.G. Thomas, Metall. Mater. Trans. B 37, 361 (2006).CrossRefGoogle Scholar
  7. 7.
    V.D. Felice, I.L.A. Daoud, B. Dussoubs, A. Jardy, and J.-P. Bellot, ISIJ Int. 52, 1273 (2012).CrossRefGoogle Scholar
  8. 8.
    W. Lou and M. Zhu, ISIJ Int. 54, 9 (2014).CrossRefGoogle Scholar
  9. 9.
    W. Lou and M. Zhu, Metall. Mater. Trans. B 44, 762 (2013).CrossRefGoogle Scholar
  10. 10.
    J. Meng, E. Tabosa, W. Xie, K. Runge, D. Bradshaw, and E. Manlapig, Miner. Eng. 95, 79 (2016).CrossRefGoogle Scholar
  11. 11.
    A.V. Nguyen, D.-A. An-Vo, T. Tran-Cong, and G.M. Evans, Int. J. Miner. Process. 156, 75 (2016).CrossRefGoogle Scholar
  12. 12.
    M. Firouzi, A.V. Nguyen, and S.H. Hashemabadi, Miner. Eng. 24, 973 (2011).CrossRefGoogle Scholar
  13. 13.
    T.Y. Liu and M.P. Schwarz, Int. J. Miner. Process. 90, 45 (2009).CrossRefGoogle Scholar
  14. 14.
    T.Y. Liu and M.P. Schwarz, Chem. Eng. Sci. 64, 5287 (2009).CrossRefGoogle Scholar
  15. 15.
    Y. Gao, G.M. Evans, E.J. Wanless, and R. Moreno-Atanasio, Adv. Powder Technol. 25, 1177 (2014).CrossRefGoogle Scholar
  16. 16.
    R. Maxwell, S. Ata, E.J. Wanless, and R. Moreno-Atanasio, J. Colloid Interface Sci. 381, 1 (2012).CrossRefGoogle Scholar
  17. 17.
    H. Duan, Y. Ren, and L. Zhang, JOM 70, 2128 (2018).Google Scholar
  18. 18.
    H. Duan, L. Zhang, B.G. Thomas, and A.N. Conejo, Metall. Mater. Trans. B 49, 2722 (2018).Google Scholar
  19. 19.
    R.M. Wellek, A.K. Agrawal, and A.H.P. Skelland, AIChE J. 12, 854 (1966).CrossRefGoogle Scholar
  20. 20.
    H. Tokunaga, M. Iguchi, and H. Tatemichi, Metall. Mater. Trans. B 30, 61 (1999).CrossRefGoogle Scholar
  21. 21.
    Y. Sahai and R.I.L. Guthrie, Metall. Trans. B 13, 193 (1982).CrossRefGoogle Scholar
  22. 22.
    M. Iguchi, H. Tokunaga, and H. Tatemichi, Metall. Mater. Trans. B 28, 1053 (1997).CrossRefGoogle Scholar
  23. 23.
    J.T. Kuo and G.B. Wallis, Int. J. Multiph. Flow 14, 547 (1988).CrossRefGoogle Scholar
  24. 24.
    R.M. Davies and G. Taylor, Proc. R. Soc. Lond. A 200, 375 (1950).CrossRefGoogle Scholar
  25. 25.
    I. Komasawa, T. Otake, and M. Kamojima, J. Chem. Eng. Jpn. 13, 103 (1980).CrossRefGoogle Scholar
  26. 26.
    I. Yabe and D. Kunii, Kagaku Kogaku Ronbun 2, 144 (1976).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations