Advertisement

JOM

, Volume 71, Issue 1, pp 116–123 | Cite as

Oxidation Behavior and Chromium Evaporation From Fe and Ni Base Alloys Under SOFC Systems Operation Conditions

  • Ashish N. AphaleEmail author
  • Boxun Hu
  • Michael Reisert
  • Amit Pandey
  • Prabhakar Singh
Advancement in Solid Oxide Fuel Cell Research
  • 170 Downloads

Abstract

Fe and Ni base alloys serve as materials of choice for the fabrication of stack and balance of plant components in solid oxide fuel cell power systems. The oxidation behavior of select Fe and Ni base alloys has been investigated, and chromium evaporation rates have been experimentally measured at 850°C in 3% humidified air exposure conditions. Changes in the oxide morphology and chemistry from the alloys representing chromia former (602CA), alumina former (H214), and mixed chromia and alumina scale formers (AFA25) at 900°C and 1100°C during exposure to humidified air have been studied and are presented. It is found that the rate of Cr evaporation from the alloys decreases in the order of 602CA followed by Haynes 214 and AFA25 at 850°C during exposure to humidified air. Surface and cross-sectional scale morphologies and chemistry have been examined, and variations in the Cr evaporation behavior of different alloys are discussed based on the reaction thermodynamics.

Notes

Acknowledgements

Authors acknowledge the financial support from the US DOE (DE-FE-0023385). The University of Connecticut is acknowledged for providing instruments and laboratory facilities for the timely execution of the experimental work. The authors also acknowledge Dr. Lichun Zhang for his assistance in conducting FIB/TEM analysis.

Supplementary material

11837_2018_3188_MOESM1_ESM.pdf (414 kb)
Supplementary material 1 (PDF 414 kb)

References

  1. 1.
    H. Yokokawa, T. Horita, N. Sakai, K. Yamaji, M. Brito, Y. Xiong, and H. Kishimoto, Solid State Ion. 177, 3193 (2006).CrossRefGoogle Scholar
  2. 2.
    K. Hilpert, J. Electrochem. Soc. 143, 3642 (1996).CrossRefGoogle Scholar
  3. 3.
    C. Collins, J. Lucas, T.L. Buchanan, M. Kopczyk, A. Kayani, P.E. Gannon, M.C. Deibert, and R.J. Smith, et al., Surf. Coat. Technol. 201, 4467 (2006).CrossRefGoogle Scholar
  4. 4.
    J.W. Fergus, Int. J. Hydrogen Energy 32, 3664 (2007).CrossRefGoogle Scholar
  5. 5.
    S.P. Jiang and X. Chen, Int. J. Hydrogen Energy 39, 505 (2014).MathSciNetCrossRefGoogle Scholar
  6. 6.
    J. Huang, F. Xie, C. Wang, and Z. Mao, Int. J. Hydrogen Energy 37, 877 (2012).CrossRefGoogle Scholar
  7. 7.
    T. Horita, Y. Xiong, H. Kishimoto, K. Yamaji, M.E. Brito, and H. Yokokawa, J. Electrochem. Soc. 157, B614 (2010).CrossRefGoogle Scholar
  8. 8.
    B. Hu, S. Krishnan, C. Liang, S.J. Heo, A.N. Aphale, R. Ramprasad, and P. Singh, Int. J. Hydrogen Energy 42, 10208 (2017).CrossRefGoogle Scholar
  9. 9.
    S. Taniguchi, M. Kadowaki, H. Kawamura, T. Yasuo, Y. Akiyama, Y. Miyake, and T. Saitoh, J. Power Sour. 55, 73 (1995).CrossRefGoogle Scholar
  10. 10.
    E.J. Opila, D.L. Myers, N.S. Jacobson, I.M.B. Nielsen, D.F. Johnson, J.K. Olminsky, and M.D. Allendorf, J. Phys. Chem. A 111, 1971 (2007).CrossRefGoogle Scholar
  11. 11.
    Y.L. Liu, A. Hagen, R. Barfod, M. Chen, H.J. Wang, F.W. Poulsen, and P.V. Hendriksen, Solid State Ion. 180, 1298 (2009).CrossRefGoogle Scholar
  12. 12.
    X. Chen, P.Y. Hou, C.P. Jacobson, S.J. Visco, and L.C. De Jonghe, Solid State Ion. 176, 425 (2005).CrossRefGoogle Scholar
  13. 13.
    P. Singh and N. Birks, Oxid. Met. 12, 23 (1978).CrossRefGoogle Scholar
  14. 14.
    S.R. Akanda, M.E. Walter, N.J. Kidner, and M.M. Seabaugh, Thin Solid Films 565, 237 (2014).CrossRefGoogle Scholar
  15. 15.
  16. 16.
    V.P. Deodeshmukh and S.K. Srivastava, Superalloys 2008, in 11th International Symposium on Superalloys, p. 689 (2008).Google Scholar
  17. 17.
    R. Pillai, H. Ackermann, H. Hattendorf, and S. Richter, Corros. Sci. 75, 28 (2013).CrossRefGoogle Scholar
  18. 18.
    A. Chyrkin, R. Pillai, T. Galiullin, E. Wessel, D. Druner, and W.J. Quadakkers, Corros. Sci. 127, 27 (2017).CrossRefGoogle Scholar
  19. 19.
    M.P. Brady, Y. Yamamoto, M.L. Santella, and L.R. Walker, Oxid. Met. 72, 311 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Ashish N. Aphale
    • 1
    Email author
  • Boxun Hu
    • 1
  • Michael Reisert
    • 1
  • Amit Pandey
    • 2
  • Prabhakar Singh
    • 1
  1. 1.Center for Clean Energy Engineering, Department of Materials Science and EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.LG Fuel Cell SystemsCantonUSA

Personalised recommendations