, Volume 70, Issue 12, pp 2807–2812 | Cite as

Separation of Radioactive Elements from Ethiopian Kenticha Pegmatite Ore by Hydrometallurgical Methods

  • Mulugeta Sisay CheruEmail author
  • Alberto Velázquez del Rosario
  • Abubeker Yimam Ali
  • Goitom Gebreyohanes Berhe
  • Bogale Tadesse
Solution Purification Technology


The leaching and extraction behavior of uranium and thorium from a high-grade Ethiopian pegmatite ore in a mixture of hydrofluoric acid and sulfuric acid has been investigated. The effects of variables such as the temperature, particle size, acid concentration, and leaching time were studied. The leaching efficiency of uranium increased with increasing temperature to 150°C, at which 96% removal of uranium was achieved. Particles in the size range of − 100 + 75 μm resulted in the highest leaching of uranium, while formation of a colloidal suspension was observed when using a fine particle size fraction (− 75 μm). The dissolution of uranium increased with increasing leaching time. No significant systematic dependence of the leachability of thorium on the above variables was observed. Optimum extraction of uranium and thorium using D2EHPA was obtained when using aqueous/organic phase volume ratio of 1:1, solvent concentration of 0.3 M, and contact time of 20 min.



The authors would like to thank the Ethiopian Mineral Petroleum and Biofuel Corporation, Ethiopian Conformity Assessment Enterprise, Jimma University, Addis Ababa University, and Grace Trading for financial and in-kind assistance.


  1. 1.
    M. Nete and W. Purcell, Emerging Trends in Chemical Sciences, ed. P. Ramasami, B.M. Gupta, L.S. Jhaumeer, and K.W.H. Li (Basel: Springer, 2018), p. 267.CrossRefGoogle Scholar
  2. 2.
    J.B. Lambert, Kirk-Othmer Encyclopedia of Chemical Technology, eds. D. Othmer and R.E. Kirk (Hoboken: Wiley, 2011).Google Scholar
  3. 3.
    S.B. Dampare, B.J.B. Nyarko, S. Osae, E.H.K. Akaho, D.K. Asiedu, Y. Serfor-Armah, and P. Nude, J. Radioanal. Nucl. Chem. 265, 53 (2005).CrossRefGoogle Scholar
  4. 4.
    G.J. Simandl, Tantalum market and resources: an overview. B. C. Geol. Surv. 1, 313 (2001).Google Scholar
  5. 5.
    O.M. EL-Husaini and M.N. EL-Hazek, Eur. J. Miner. Process. Environ. Protec. 5, 7 (2005).Google Scholar
  6. 6.
    O.M. El-Hussaini and M.A. Mahdy, Hydrometallurgy 64, 219 (2002).CrossRefGoogle Scholar
  7. 7.
    V. Madakkaruppan, A. Pius, T. Sreenivas, and C. Sarbajna, J. Radioanal. Nucl. Chem. 309, 493 (2016).Google Scholar
  8. 8.
    K.C.A. Nettleton, A.N. Nikoloski, and M.D. Costa, Hydrometallurgy 157, 270 (2015).CrossRefGoogle Scholar
  9. 9.
    M. Nete, W. Purcell, and J.T. Nel, JOM 68, 556 (2016).CrossRefGoogle Scholar
  10. 10.
    G.G. Berhe, V.R. Alberto, B. Tadesse, A. Yimam, and G. Woldetinsae, Physicochem. Probl. Miner. Process. 54, 406 (2018).Google Scholar
  11. 11.
    C.K. Gupta and A.K. Suri, Extractive Metallurgy of Niobium (Boca Raton: CRC Press, 1994).Google Scholar
  12. 12.
    V.G. Maiorov, A.I. Nikolaev, and V.K. Kopkov, Russ. J. Appl. Chem. 74, 363 (2001).CrossRefGoogle Scholar
  13. 13.
    A.R. Adetunji, W.O. Siyanbola, I.I. Funtua, S.O. Olusunle, A.A. Afonja, and O.O. Adewoye, J. Miner. Mater. Charact. Eng. 4, 85 (2005).Google Scholar
  14. 14.
    J.R. Kumar, J.S. Kim, J.Y. Lee, and H.S.A. Yoon, Sep. Purif. Rev. 40, 77 (2014).CrossRefGoogle Scholar
  15. 15.
    A.H. Orabi, J. Rad. Res. Appl. Sci. 6, 1 (2013).Google Scholar
  16. 16.
    K. Kiegiel, A. Abramowska, P. Biełuszka, G. Zakrzewska-Kołtuniewicz, and S. Wołkowicz, J. Radioanal. Nucl. Chem. 311, 589 (2017).CrossRefGoogle Scholar
  17. 17.
    D. Gajda, K. Kiegiel, G. Zakrzewska-Kołtuniewicz, E. Chajduk, and S. Wołkowicz, J. Radioanal. Nucl. Chem. 303, 521 (2015).CrossRefGoogle Scholar
  18. 18.
    S.A. McMaster, R. Ram, F. Charalambous, M.I. Pownceby, J. Tardio, and S.K. Bhargava, J. Hazard. Mater. 280, 478 (2014).CrossRefGoogle Scholar
  19. 19.
    S.A. McMaster, R. Ram, J. Tardio, and S.K. Bhargava, International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle, ed. J. Zellinger (Vienna: World Nuclear Association, 2014).Google Scholar
  20. 20.
    D. Küster, R.L. Romer, D. Tolessa, D. Zerihun, K. Bheemalingeswara, F. Melcher, and T. Oberthür, Miner. Deposita 44, 1 (2009).CrossRefGoogle Scholar
  21. 21.
    ASTM D6913/D6913 M-17, Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis (ASTM International, West Conshohocken, PA, 2017), Accessed 22 Mar 2018.
  22. 22.
    R.C. Merritt, The Extractive Metallurgy of Uranium (Golden: Colorado School of Mines Research Institute, 1971), pp. 59–61.Google Scholar
  23. 23.
    H.D. Mathur and O.P. Tandon, Chemistry of Rare Elements (New Delhi: S. Chand, 1986), p. 93.Google Scholar
  24. 24.
    M. Nete, F. Koko, T. Theron, W. Purcell, and J.T. Nel, Int. J. Miner. Metall. Mater. 21, 1153 (2014).CrossRefGoogle Scholar
  25. 25.
    A.D. Pienaar, J.B. Wagener, and P.L. Crouse, Int. J. Miner. Process. 114, 7 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Mulugeta Sisay Cheru
    • 1
    Email author
  • Alberto Velázquez del Rosario
    • 2
  • Abubeker Yimam Ali
    • 3
  • Goitom Gebreyohanes Berhe
    • 4
  • Bogale Tadesse
    • 5
  1. 1.School of Materials Science and EngineeringJimma UniversityJimmaEthiopia
  2. 2.Federal Technical and Vocational, Education and Training InstituteAddis AbabaEthiopia
  3. 3.School of Chemical and Bio EngineeringAddis Ababa Institute of TechnologyAddis AbabaEthiopia
  4. 4.Department of ChemistryMekelle UniversityMekelleEthiopia
  5. 5.Western Australian School of MinesCurtin UniversityKalgoorlieAustralia

Personalised recommendations