Fabrication of Ag/La(OH)3 Nanorod Framework Composites Through Dealloying for CO Oxidation
- 28 Downloads
Abstract
Ag/La(OH)3 nanorod framework composites were fabricated by dealloying melt-spun Al-La-Ag alloys for CO oxidation. After the removal of Al from the precursory alloys, La(OH)3 nanorods bonded with each other to form a novel three-dimension (3D) architecture with nanopores. When the dealloyed samples were calcined at 300°C, Ag nanoparticles (NPs) were in situ supported on the surface of the nanorods and simultaneously contact interfaces were generated between the Ag NPs and the La(OH)3 nanorods. The large specific surface areas, unique 3D framework structure and active OH radicals were believed to contribute to the improvement of the catalytic activity for CO oxidation. The catalytic performance of Ag/La(OH)3 composite was highly dependent on the Ag content and calcination temperature. CO oxidation studies showed that the nanorod composite calcined at 300°C exhibited higher activity for CO oxidation in comparison with the uncalcined sample and pure La(OH)3 nanorods. The Ag/La(OH)3 nanorod framework should be a promising catalyst for CO catalytic oxidation owing to the combination of novel nanostructures and functionalized particles.
Notes
Acknowledgement
This study has been financially supported by the National Natural Science Foundation of China (Grant Nos. 51371135, 51771141).
Supplementary material
References
- 1.L.Q. Qwabe, V.D.B.C. Dasireddy, S. Singh, and H.B. Friedrich, Int. J. Hydrog. Energy 41, 2144 (2016).CrossRefGoogle Scholar
- 2.S. Royer and D. Duprez, ChemCatChem 3, 24 (2011).CrossRefGoogle Scholar
- 3.J.R. Gaudet, A.D.L. Riva, E.J. Peterson, T. Bolin, and A.K. Datye, ACS Catal. 3, 846 (2013).CrossRefGoogle Scholar
- 4.H. Shinjoh, Catal. Surv. Asia 13, 184 (2009).CrossRefGoogle Scholar
- 5.H. Tanaka, M. Uenishi, M. Taniguchi, I. Tan, K. Narita, M. Kimura, K. Kaneko, Y. Nishihata, and J.I. Mizuki, Catal. Today 117, 321 (2006).CrossRefGoogle Scholar
- 6.V.V. Dutov, G.V. Mamontov, V.I. Zaikovskii, and O.V. Vodyankina, Catal. Today 278, 150 (2016).CrossRefGoogle Scholar
- 7.S. Bao, N. Yan, X. Shi, R. Li, and Q. Chen, Appl. Catal. A Gen. 487, 189 (2014).CrossRefGoogle Scholar
- 8.X. Zhang, S. Cheng, W. Zhang, C. Zhang, N.E. Drewett, X. Wang, D. Wang, S.J. Yoo, J.G. Kim, and W. Zheng, Ind. Eng. Chem. Res. 56, 11042 (2017).CrossRefGoogle Scholar
- 9.Z. Qu, F. Yu, X. Zhang, Y. Wang, and J. Gao, Chem. Eng. J. 229, 522 (2013).CrossRefGoogle Scholar
- 10.E. Kolobova, A. Pestryakov, G. Mamontov, Y. Kotolevich, N. Bogdanchikova, M. Farias, A. Vosmerikov, L. Vosmerikova, and V.C. Corberan, Fuel 188, 121 (2017).CrossRefGoogle Scholar
- 11.Y. Wang, D. Widmann, F. Lehnert, D. Gu, F. Schüth, and R.J. Behm, Angew. Chem. Int. Ed. 56, 9597 (2017).CrossRefGoogle Scholar
- 12.N. Yousefi, M. Pazouki, M. Alizadeh, and F.A. Hesari, Synth. React. Inorg. Met. Org. Chem. 46, 464 (2016).CrossRefGoogle Scholar
- 13.A. Pestryakov, E. Kolobova, and V. Lunin, Int. J. Nanotechnol. 13, 200 (2016).CrossRefGoogle Scholar
- 14.Y. Li, P. Guan, F. Yu, W. Li, and X. Xie, Nanomaterials 7, 205 (2017).CrossRefGoogle Scholar
- 15.G. Fan, F. Li, D.G. Evans, and X. Duan, Chem. Soc. Rev. 43, 7040 (2014).CrossRefGoogle Scholar
- 16.M. Haruta, J. New Mater. Electrochem. Syst. 7, 163 (2004).Google Scholar
- 17.F. Song and X. Hu, J. Am. Chem. Soc. 136, 16481 (2014).CrossRefGoogle Scholar
- 18.U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, and O.S. Joo, J. Power Sources 188, 338 (2009).CrossRefGoogle Scholar
- 19.F. Song and X. Hu, Nat. Commun. 5, 4477 (2014).CrossRefGoogle Scholar
- 20.M. Méndez, J.J. Carvajal, L.F. Marsal, P. Salagre, M. Aguiló, F. Díaz, P. Formentín, J. Pallarès, and Y. Cesteros, J. Nanopart. Res. 15, 1 (2013).CrossRefGoogle Scholar
- 21.X. Xiao, W. Zhang, J. Yu, Y. Sun, Y. Zhang, and F. Dong, Catal. Sci. Technol. 6, 5003 (2016).CrossRefGoogle Scholar
- 22.P.S. Kohli, M. Kumar, K.K. Raina, and M.L. Singla, J. Mater. Sci. Mater. Electron. 23, 2257 (2012).CrossRefGoogle Scholar
- 23.J.G. Kang, Y.I. Kim, D.W. Cho, and Y. Sohn, Mater. Sci. Semicond. Process. 40, 737 (2015).CrossRefGoogle Scholar
- 24.F. Dong, X. Xiao, G. Jiang, Y. Zhang, W. Cui, and J. Ma, Phys. Chem. Chem. Phys. 17, 16058 (2015).CrossRefGoogle Scholar
- 25.Y. Kang, M. Sun, and A. Li, Catal. Lett. 142, 1498 (2012).CrossRefGoogle Scholar
- 26.J. Zhu, Z. Gui, and Y. Ding, Mater. Lett. 62, 2373 (2008).CrossRefGoogle Scholar
- 27.B. Tang, J. Ge, C. Wu, L. Zhuo, J. Niu, Z. Chen, Z. Shi, and Y. Dong, Nanotechnology 15, 1273 (2004).CrossRefGoogle Scholar
- 28.H. Yang, H. Qiu, J.Q. Wang, J. Huo, X. Wang, R.W. Li, and J. Wang, J. Alloys Compd. 703, 461 (2017).CrossRefGoogle Scholar
- 29.T. Song, M. Yan, and M. Qian, Corros. Sci. 134, 78 (2018).CrossRefGoogle Scholar
- 30.H.J. Qiu, J.Q. Wang, P. Liu, Y. Wang, and M.W. Chen, Corros. Sci. 96, 196 (2015).CrossRefGoogle Scholar
- 31.N. Yu, T. Wang, C. Nie, L. Sun, J. Li, and H. Geng, JOM 68, 391 (2016).CrossRefGoogle Scholar
- 32.N. Yu, L. Jiang, H. Hou, X. Chen, J. Li, H. Geng, and D. Zhao, JOM 69, 1027 (2017).CrossRefGoogle Scholar
- 33.M.Y.N.K.C. Kima, W.T. Kimb, and D.H. Kima, Corros. Sci. 126, 381 (2017).CrossRefGoogle Scholar
- 34.X. Zhang, K. Li, W. Shi, C. Wei, X. Song, S. Yang, and Z. Sun, Nanotechnology 28, 045602 (2016).CrossRefGoogle Scholar
- 35.T. Kou, C. Si, J. Pinto, C. Ma, and Z. Zhang, Nanoscale 9, 8007 (2017).CrossRefGoogle Scholar
- 36.R. Fiorenza, C. Crisafulli, G.G. Condorelli, F. Lupo, and S. Scirè, Catal. Lett. 145, 1691 (2015).CrossRefGoogle Scholar
- 37.M. Ozawa, R. Onoe, and H. Kato, J. Alloys Compd. 408, 556 (2006).CrossRefGoogle Scholar
- 38.A. Neumann and D. Walter, Thermochim. Acta 445, 200 (2006).CrossRefGoogle Scholar
- 39.M.F. Sunding, K. Hadidi, S. Diplas, O.M. Løvvik, T.E. Norby, and A.E. Gunnæs, J. Electron. Spectrosc. 184, 399 (2011).CrossRefGoogle Scholar
- 40.H.J. Qiu, L. Peng, X. Li, H.T. Xu, and Y. Wang, Corros. Sci. 92, 16 (2015).CrossRefGoogle Scholar
- 41.M. Jung and B. Mishra, J. Sustain. Metall. 2, 1 (2016).CrossRefGoogle Scholar
- 42.H. Senoh, M. Ueda, H. Inoue, N. Furukawa, and C. Iwakura, J. Alloys Compd. 266, 111 (1998).CrossRefGoogle Scholar
- 43.J.A. Dean, Lange’s Handbook of Chemistry, 15th ed. (New York: McGraw-Hill Book, 1999).Google Scholar
- 44.X. Zhang, G. Li, X. Song, S. Yang, and Z. Sun, RSC Adv. 7, 32442 (2017).CrossRefGoogle Scholar
- 45.E. Füglein and D. Walter, Zeitschrift fur anorganische und allgemeine Chemie 632, 2154 (2006).CrossRefGoogle Scholar
- 46.D.A.H. Cunningham, W. Vogel, H. Kageyama, S. Tsubota, and M. Haruta, J. Catal. 177, 1 (1998).CrossRefGoogle Scholar
- 47.T. Takei, I. Okuda, K.K. Bando, T. Akita, and M. Haruta, Chem. Phys. Lett. 493, 207 (2010).CrossRefGoogle Scholar