Advertisement

JOM

pp 1–7 | Cite as

Effects of Nitrogen on the Morphology and Evolution of M2C Eutectic Carbides in Fe-Mo-W-Co-Cr-V-C Alloy

  • Yi-Wa Luo
  • Han-Jie Guo
  • Xiao-Lin Sun
  • Jing Guo
  • Fei Wang
Design, Development, Manufacturing, and Applications of Refractory Metals and Materials
  • 48 Downloads

Abstract

The effects of nitrogen on the characteristics and evolutions of M2C eutectic carbides in the Fe-Mo-W-Co-Cr-V-C alloy were investigated in both as-cast and wrought states. Microstructural observation, electrolytic extraction method, and x-ray diffraction analysis were conducted on the specimens. The results showed that, in the case of low nitrogen concentration (w[N]% = 0.006) in the as-cast alloy, lamellar M2C carbides were found to be the dominant precipitate. Nitrogen addition resulted in M2C carbide precipitate as a fibrous structure rather than a lamellar structure. Fibrous M2C were more likely to decompose into fine spherical M6C and V(C,N) during the forging process compared to lamellar M2C. Accordingly, it was suggested that adding nitrogen to Fe-Mo-W-Co-Cr-V-C alloy was required to achieve small dimensions and homogeneous distribution of carbides.

Notes

Acknowledgements

This research was sponsored by the National Natural Science Foundation of China (NSFC) by a Grant of No. U1560203.

References

  1. 1.
    M. Hashimoto, O. Kubo, and Y. Matsubara, ISIJ Int. 44, 372 (2004).CrossRefGoogle Scholar
  2. 2.
    M.J. Wang, Y. Wang, and F.F. Sun, Mater. Sci. Eng. A 438–440, 1139 (2006).CrossRefGoogle Scholar
  3. 3.
    M. Godec, B.S. Batic, D. Mandrino, A. Nagode, V. Leskovsek, S.D. Skapin, and M. Jenko, Mater. Charact. 61, 452 (2010).CrossRefGoogle Scholar
  4. 4.
    K.C. Hwang, S. Lee, and H.C. Lee, Mater. Sci. Eng. A 254, 296 (1998).CrossRefGoogle Scholar
  5. 5.
    E.S. Lee, W.J. Park, J.Y. Jung, and S. Ahn, Metall. Mater. Trans. A 29, 1395 (1998).CrossRefGoogle Scholar
  6. 6.
    S. Sackl, H. Leitner, H. Clemens, and S. Primig, Mater. Charact. 120, 323 (2016).CrossRefGoogle Scholar
  7. 7.
    T. Vecko-Pirtovsek, G. Kugler, M. Godec, and M. Tercelj, Metall. Mater. Trans. A 43, 3793 (2012).Google Scholar
  8. 8.
    H. Hanninen, J. Romu, R. Ilola, J. Tervo, and A. Laitinen, J. Mater. Process. Technol. 117, 424 (2001).CrossRefGoogle Scholar
  9. 9.
    M.J. Wang, Y. Wang, Y.C. Xing, and L. Chen, Mater. Sci. Eng. A 438–440, 1143 (2006).CrossRefGoogle Scholar
  10. 10.
    W.J. Kaluba, T. Kaluba, and R. Taillard, Scr. Mater. 41, 1289 (1999).CrossRefGoogle Scholar
  11. 11.
    A. Fossati, F. Borgioli, E. Galvanetto, and T. Bacci, Corros. Sci. 48, 1513 (2006).CrossRefGoogle Scholar
  12. 12.
    A. Ahmed and A. Fathy, Ironmak. Steelmak. 35, 458 (2008).CrossRefGoogle Scholar
  13. 13.
    K.B. Lee, H.R. Yang, and H. Kwon, Metall. Mater. Trans. A 32A, 1659 (2001).CrossRefGoogle Scholar
  14. 14.
    D.J. Ha, H.K. Sung, J.W. Park, and S. Lee, Metall. Mater. Trans. A 40A, 2568 (2009).CrossRefGoogle Scholar
  15. 15.
    T. Mattar, K.M. Ibrahim, A. Fathy, and H.E. Faramawy, Mater. Charact. 407, 58 (2007).Google Scholar
  16. 16.
    C.K. Kim, J.I. Park, S. Lee, Y.C. Kim, N.J. Kim, and J.S. Yang, Metall. Mater. Trans. A 36A, 87 (2005).CrossRefGoogle Scholar
  17. 17.
    M. Boccalini and H. Goldenstein, Int. Mater. Rev. 46, 92 (2001).CrossRefGoogle Scholar
  18. 18.
    P. Ding, G. Shi, and S. Zhon, Metall. Trans. A 24A, 11265 (1993).Google Scholar
  19. 19.
    K. Lefor, M. Walter, A. Weddeling, E. Hryha, S. Huth, S. Weber, L. Nyborg, and W. Theisen, Metall. Mater. Trans. A 46, 1154 (2015).CrossRefGoogle Scholar
  20. 20.
    X.F. Zhou, D. Liu, W.L. Zhu, F. Fang, Y.Y. Tu, and J.Q. Jiang, J. Iron Steel Res. Int. 24, 43 (2017).CrossRefGoogle Scholar
  21. 21.
    D. Bombac, M. Tercelj, M. Fazarinc, and G. Kugler, Mater. Sci. Eng. A 703, 438 (2017).CrossRefGoogle Scholar
  22. 22.
    M. Godec, T. Vecko-Pirtovsek, B. Setina-Batic, P. McGuiness, J. Burja, and B. Podgornik, Sci. Rep. 5, 16202 (2015).CrossRefGoogle Scholar
  23. 23.
    Y.W. Luo, H.J. Guo, X.L. Sun, M.T. Mao, and J. Guo, Metals 7, 27 (2017).CrossRefGoogle Scholar
  24. 24.
    M. Kang and Y.K. Lee, Metall. Mater. Trans. A 47A, 3365 (2016).CrossRefGoogle Scholar
  25. 25.
    Y.W. Luo, H.J. Guo, X.L. Sun, J. Guo, and F. Wang, Sci. Rep. 8, 4328 (2018).CrossRefGoogle Scholar
  26. 26.
    X.F. Zhou, F. Fang, G. Li, and J.Q. Jiang, ISIJ Int. 50, 1151 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.Beijing Key Laboratory of Special Melting and Preparation of High-End Metal MaterialsBeijingPeople’s Republic of China
  3. 3.Tianjin Cisri-Harder Materials and Technology Co. LTD, Central Iron and Steel Research Institute (CISRI)TianjinPeople’s Republic of China

Personalised recommendations