Advertisement

JOM

, Volume 71, Issue 2, pp 697–702 | Cite as

Improvements in Welding Properties of Titanium Through the Use of Interlayers

  • Timotius PasangEmail author
  • Mona Aziziderouei
  • Yuan Tao
  • Dominique Ogletree
  • Gorja Stump
  • Yuji Sato
  • Masahiro Tsukamoto
  • Cho-Pei Jiang
Technological Innovations in Metals Engineering
  • 51 Downloads

Abstract

This article presents some recent results from fusion welding of titanium alloys with interlayers. Without an interlayer, the CP Ti weld typically results in comparable hardness across the weld and base material (BM). However, for α alloys, near-α alloys and α + β alloys, the fusion zone (FZ) and heat-affected zone (HAZ) show high hardness compared with the BM. Inversely, β alloys have FZ and HAZ with lower hardness compared with BM. Under loading, the presence of areas with high or lower hardness could affect the load distribution across the weldments. Post-welding heat treatment (PWHT) is sometimes employed to minimise or avoid this situation. However, for large-size components, PWHT is not practical. In this investigation, we show that by selecting a proper interlayer the above issues can be minimised; hence, PWHT may not be necessary, leading to cost reduction and process efficiency.

References

  1. 1.
    M.J. Donachie, Titanium: A Technical Guide, 2nd ed. (Materials Park: ASM International, 2000).Google Scholar
  2. 2.
    A.M. Irisarri, J.L. Barreda, and X. Azpiroz, Vacuum 84, 393 (2010).CrossRefGoogle Scholar
  3. 3.
    D. Becker and W.A. Baeslack III, Weld. J. 59, 85 (1980).Google Scholar
  4. 4.
    G. Lütjering and J.C. Williams, Titanium, 2nd ed. (Berlin: Springer, 2007).Google Scholar
  5. 5.
    W.A. Baeslack III, P.S. Liu, D.P. Barbis, J.R. Schley, and J.R. Wood, Postweld Heat Treatment of GTA Welds in a High-Strength Metastable Titanium Alloy—Beta-CTM, Titanium’92, Science & Technology, ed. by F.H. Froes, I. Chaplan (1993), pp. 1469–1476.Google Scholar
  6. 6.
    Y. Tao, Microstructure Evolution and Phase Transformation of Welded Metastable Beta-Titanium Alloy (Ti-5Al-5V-5Mo-3Cr), PhD Dissertation, AUT (2017).Google Scholar
  7. 7.
    P.J. Bania, Beta Titanium Alloys in the 1990’s, ed. D. Eylon, R.R. Boyer, and D.A. Koss (Warrendale: TMS, 1993), pp. 3–14.Google Scholar
  8. 8.
    M.F. Huang, The Mechanical Performance and Microstructure Development of Laser Beam Welds and Post Weld Heat Treatment of Ti10-2-3 Alloy, PhD Dissertation, Lehigh University, Bethlehem, Pennsylvania, USA (2018).Google Scholar
  9. 9.
    R. Mitchell, A. Short, T. Pasang, and G. Littlefair, Characteristics of EBW Ti alloys, in Structural Integrity and FailureSIF, University of Auckland (2010).Google Scholar
  10. 10.
    J.C. Sabol, T. Pasang, W.Z. Misiolek, and J.C. Williams, J. Mater. Process. Technol. 212, 2380 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Timotius Pasang
    • 1
    Email author
  • Mona Aziziderouei
    • 1
  • Yuan Tao
    • 1
  • Dominique Ogletree
    • 1
  • Gorja Stump
    • 1
  • Yuji Sato
    • 2
  • Masahiro Tsukamoto
    • 2
  • Cho-Pei Jiang
    • 3
  1. 1.School of Engineering, Computer and Mathematical SciencesAuckland University of TechnologyAucklandNew Zealand
  2. 2.Joining and Welding Research InstituteOsaka UniversityOsakaJapan
  3. 3.Digital Manufacturing Research Center for DentistryNational Formosa UniversityHuweiTaiwan

Personalised recommendations