, Volume 71, Issue 3, pp 984–994 | Cite as

Study on the Activity of Aeolian Sand Powder and Alkali Excitation Modification

  • GenFeng Li
  • XiangDong ShenEmail author
  • Qi Yuan
  • YuXiao Zou
  • Lu Xiong
Effective Production and Recycling of Powder Materials


Aeolian sand powder samples were made from aeolian sand which was obtained from the Kubuqi Desert of Inner Mongolia, China. With the method of boiling, the effects of different mass fraction sodium sulfate and sodium hydroxide on the dissolution of active substances of aeolian sand powder were studied. Meanwhile, based on the “alkali activation” theory, the type of activator, the quality fraction and the pre-curing temperature were shown to be variable, and the effect of aeolian sand powder modification is discussed through the test of the strength of aeolian sand powder–cement mortar. Micro-methods such as the total spectral semi-quantitative analysis, x-ray diffraction, field emission scanning electron microscopy, and nuclear magnetic resonance technology were used to study the mineral composition, microstructure and pore characteristics, and then to discuss the feasibility of aeolian sand powder as an alkali-activated material. The results showed that sodium sulfate had a better activation effect on the aeolian sand powder compared with that of sodium hydroxide. The activation rate of aeolian sand powder increases with the increase of the mass fraction of the activator, and, with the increase of the alkalinity of the solution, the dissolution of SiO2 and other active substances in the aeolian sand powder increases gradually. The effect of sodium sulfate on the aeolian sand powder is better than that of sodium hydroxide, and when the mass fraction of sodium sulfate is 2%, the volume of the aeolian sand powder is 15%. When the pre-curing temperature is 35°C, the modification effect of aeolian sand powder is better and the activity index reaches 108.2%. Under the effects of the sodium sulfate, 2.2% and 2.6% active SiO2 and CaO were, respectively, dissolved from the aeolian sand powder. Then, a polymerization reaction occurred under the combined action of the temperature, which generated the needle-shaped hydration product ettringite with a good development state. Meanwhile, the ratio of the inner 20-nm hole of the aeolian sand powder–cement mortar specimen reached 85.69%, and there were many disconnected capillary pores, the irreducible fluid saturation was as high as 94.311%, and the gelling property was good.



Fund Program: National Natural Science Foundation of China (51769025, 51569021); The Doctorial Innovation Fund of the Inner Mongolia Autonomous Region (B20171012918).


  1. 1.
    G. Li, X. Shen, and J. Wu, Bull. Chin. Ceram. Soc. 04, 1213 (2016).Google Scholar
  2. 2.
    J. Hu, Z. Hong, H. Zhang, X. Yan, and L. Li, J. Traffic Transp. Eng. 17, 36 (2017).Google Scholar
  3. 3.
    M. Sheng, Z. Qian, and X. Lu, Chin. J. Geotech. Eng. 12, 2261 (2017).Google Scholar
  4. 4.
    Z. Qian, X. Lu, and S. Ding, Rock Soil Mech. 34, 1097 (2013).Google Scholar
  5. 5.
    X. Lu, S. Ding, W. Yang, and W. Zheng, J. Water Resour. Archit. Eng. 05, 20 (2017).Google Scholar
  6. 6.
    Z. Chen and W. Li, J. Chang’an Univ. (Nat. Sci. Edn.) 01, 1 (2007).Google Scholar
  7. 7.
    S. Lopez-Querol, J. Arias-Trujillo, M.G.M. Elipe, A. Matias-Sanchez, and B. Cantero, Constr. Build. Mater. 153, 374 (2017).CrossRefGoogle Scholar
  8. 8.
    L. Yan, W. Yu, D. Hu, and W. Liu, Rock Soil Mech. 146, 1 (2018).Google Scholar
  9. 9.
    J. Wu and X. Shen, Trans. Chin. Soc. Agric. Eng. 10, 184 (2017).Google Scholar
  10. 10.
    H. Xue, X. Shen, R. Wang, Q. Liu, Z. Liu, C. Han, and Q. Yuan, Trans. Chin. Soc. Agric. Eng. 18, 118 (2017).Google Scholar
  11. 11.
    N. Yang, J Chin. Ceram. Soc. 02, 209 (1996).Google Scholar
  12. 12.
    S. Zhou and M. Zhang, Introduction of Powder Engineering (Beijing: Science Press, 2010), pp. 1–222.Google Scholar
  13. 13.
    C. Xue, A. Shen, Y. Guo, C. Wan, and X. Zhao, Mater. Rev. 10, 130 (2016).Google Scholar
  14. 14.
    V.M. Kryachek, D.A. Levina, and L.I. Chernyshev, Powder Metall. Met. Ceram. 46, 608 (2007).CrossRefGoogle Scholar
  15. 15.
    W.J. Haws, J. Miner. Met. Mater. Soc. 52, 35 (2000).CrossRefGoogle Scholar
  16. 16.
    RMd Raihanuzzaman, Z. Xie, S.J. Hong, and R. Ghomashchi, Powder Technol. 261, 1 (2014).CrossRefGoogle Scholar
  17. 17.
    A.O. Purdon, J. Soc. Chem. Ind. 59, 191 (1940).CrossRefGoogle Scholar
  18. 18.
    A. Palomo, M.W. Grutzek, and M.T. Blanco, Cem. Concr. Res. 29, 1323 (1999).CrossRefGoogle Scholar
  19. 19.
    Pacheco-Torgal Fernando, Castro-Gomes João, and Said Jalali, Construct. Build. Mater. 7, 1315 (2018).Google Scholar
  20. 20.
    J. Davidovits, J. Therm. Anal. 37, 163 (1991).CrossRefGoogle Scholar
  21. 21.
    Kaushik Sankar, Am. Ceram. Soc. Bull. 6, 56 (2017).Google Scholar
  22. 22.
    M. Albitar, M.S. MohamedAli, P. Visintin, and M. Drechsler, Construct. Build. Mater. 136, 374 (2017).CrossRefGoogle Scholar
  23. 23.
    C. Shi, F. He, A. Fernández-Jiménez, V. Pavel Krivenko, and A. Palomo, J. Chin. Ceram. Soc. 01, 69 (2012).Google Scholar
  24. 24.
    C. Li, T. Zhang, and L. Wang, J. Chin. Ceram. Soc. 08, 1090 (2015).Google Scholar
  25. 25.
    J. Dong, T. Zhang, and L. Wang, Acta Mater. Compos. Sin. 01, 132 (2016).Google Scholar
  26. 26.
    H. Wu, Y. Du, F. Wang, D. Mei, and Y. Feng, J. Southeast Univ. (Nat. Sci. Edn.) S1, 25 (2016).Google Scholar
  27. 27.
    C. Huang, X. Shi, J. Gong, and S. Chen, Chin. J. Environ. Eng. 03, 1851 (2017).Google Scholar
  28. 28.
    G. Zhu, C. Wang, and G. Li, J. Chin. Ceram. Soc. 09, 1175 (2013).Google Scholar
  29. 29.
    J. Wang, L. Zhang, X. Feng, S. Zhao, and H. Wang, Chin. J. Rock Mech. Eng. S2, 4418 (2015).Google Scholar
  30. 30.
    C. Shi, P. Klivenko, and D. Roy, Alkali-activated Cements and Concretes, 1st ed. (Beijing: Chemical Industry Press, 2008), pp. 1–344.Google Scholar
  31. 31.
    J. Davidovits, in Proceedings of 2005 Geopolymer Conference, vol. 1 (2005), p. 9.Google Scholar
  32. 32.
    ASTM. ASTM C-125 standard terminology relating to concrete and concrete aggregates. US: ASTM (2007).Google Scholar
  33. 33.
    Susumu Nakayama and Taro Asahi, J. Ceram. Soc. Jpn. 11, 1188 (2016).CrossRefGoogle Scholar
  34. 34.
    S. Wansom, S. Janjaturaphan, and S. Sinthupinyo, J. Met. Mater. Miner. 2, 1 (2009).Google Scholar
  35. 35.
    E. Villar-Cociña, E.V. Morales, and S.F. Santos, Cem. Concr. Compos. 1, 68 (2011).CrossRefGoogle Scholar
  36. 36.
    B. Samet, T. Mnif, and M. Chaabouni, Cem. Concr. Compos. 29, 741 (2007).CrossRefGoogle Scholar
  37. 37.
    M. Frías, E. Villar-Cociña, and E. Valencia-Morales, Waste Manag. 27, 533 (2007).CrossRefGoogle Scholar
  38. 38.
    H. Yoda, Y. Aikawa, and E. Sakai, J. Ceram. Soc. Jpn. 125, 130 (2017).CrossRefGoogle Scholar
  39. 39.
    Denis Damidot and Christine Lors, J. Chin. Ceram. Soc. 10, 1324 (2015).Google Scholar
  40. 40.
    Q. Wang, M. Li, and M. Shi, J. Chin. Ceram. Soc. 05, 629 (2014).Google Scholar
  41. 41.
    Q. Wang and P. Yan, J. Chin. Ceram. Soc. 10, 1406 (2008).Google Scholar
  42. 42.
    P. Wang, P. Zhao, and X. Liu, J. Build. Mater. 04, 692 (2015).Google Scholar
  43. 43.
    Y. Chen, X. Lu, and G. Liu, J. Southeast Univ. (Nat. Sci. Edn.) 02, 328 (2014).Google Scholar
  44. 44.
    X. Kang, D. Lu, and Z. Xu, J. Chin. Ceram. Soc. 08, 1091 (2016).Google Scholar
  45. 45.
    W. Liu, X. Li, and D.D. Sun, Nuclear Magnetic Resonance Logging (Beijing: Petroleum Industry Press, 2011), pp. 1–133.Google Scholar
  46. 46.
    Z. Wu and H. Lian, High Performance Concrete (Beijing: China Railway Press, 1999), pp. 50–200.Google Scholar
  47. 47.
    P. Tyrologou, A.W.L. Dudeney, and C.A. Grattoni, Waste Resour. Manag. 6, 765 (2005).Google Scholar
  48. 48.
    F.J. de Cano-Barrita, F. Castellanos, S. Ramírez-Arellanes, M.F. Cosmes-López, L.R. Reyes-Estevez, S.E. Hernández-Arrazola, and A.E. Ramírez-Ortíz, ACI Mater. J. 1, 147 (2015).Google Scholar
  49. 49.
    A.-M. She, W. Yao, W.-C. Yuan, and J. Cent, South Univ. 20, 1109 (2013).CrossRefGoogle Scholar
  50. 50.
    H. Tian, C. Wei, H. Wei, R. Yan, and P. Chen, Appl. Magn. Reson. 45, 49 (2014).CrossRefGoogle Scholar
  51. 51.
    W. Dong, X. Shen, H. Xue, J. He, and Y. Liu, Constr. Build. Mater. 1, 792 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • GenFeng Li
    • 1
  • XiangDong Shen
    • 1
    Email author
  • Qi Yuan
    • 1
  • YuXiao Zou
    • 1
  • Lu Xiong
    • 1
  1. 1.College of Water Conservancy and Civil Engineering InnerMongolia Agricultural UniversityHohhotChina

Personalised recommendations