Advertisement

JOM

pp 1–6 | Cite as

Quench Sensitivity of AA7N01 Alloy Used for High-Speed Train Body Structure

  • Hu Xie
  • Zhu Xiao
  • Zhou Li
  • Mingpu Wang
  • Shuo Ma
  • Hongyun Jiang
Aluminum and Magnesium: High Strength Alloys for Automotive and Transportation Applications
  • 15 Downloads

Abstract

The quench sensitivity of AA7N01 aluminum alloy used for high-speed train body structure was investigated by end-quenching test, time–temperature-transformation curves simulation, transmission electron microscopy and scanning transmission electron microscopy. The hardness decreased with the increasing distance from the quenched end, and the depth of the age hardening layer was about 50 mm. The simulation results showed that the high quench sensitivity temperature was between 230°C and 300°C and the critical cooling rate should be larger than 2°C/s. The decrease of hardness along the increasing distance from the quenched end was attributed to the coarsening of the η equilibrium phase and the widening of the precipitate-free zone. The high-angle annular dark field results provided the direct evidence of the induced-precipitation effect of Al3Zr particles during the quenching process.

Notes

Acknowledgments

The authors acknowledge the financial support by National Key Research and Development Program of China (2017YFB0305500), National Natural Science Foundation of China (Grant No. U1637210) and Introduction Program for Postdoctoral International Exchange.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    I. Kovács, J. Lendvai, T. Ungar, G. Groma, and J. Lakner, Acta Metall. 28, 1621 (1980).CrossRefGoogle Scholar
  2. 2.
    A. Deschamps and Y. Brechét, Scr. Mater. 39, 1517 (1998).CrossRefGoogle Scholar
  3. 3.
    J.S. Robinson, R.L. Cudd, D.A. Tanner, and G.P. Dolan, J. Mater. Process. Technol. 119, 261 (2001).CrossRefGoogle Scholar
  4. 4.
    J.L. Cavazos and R. Colás, Mater. Sci. Eng. A 363, 171 (2003).CrossRefGoogle Scholar
  5. 5.
    A. Deschamps, G. Texier, S. Ringeval, and L. Delfaut-Durut, Mater. Sci. Eng. A 501, 133 (2009).CrossRefGoogle Scholar
  6. 6.
    J.S. Robinson, D.A. Tanner, C.E. Truman, A.M. Paradowska, and R.C. Wimpory, Mater. Charact. 65, 73 (2012).CrossRefGoogle Scholar
  7. 7.
    M.J. Starink, B. Mikereit, Y. Zhang, and P.A. Rometsch, Mater. Des. 88, 958 (2015).CrossRefGoogle Scholar
  8. 8.
    Y. Deng, L. Wan, Y. Zhang, and X. Zhang, J. Alloys Compd. 509, 4636 (2011).CrossRefGoogle Scholar
  9. 9.
    S.T. Lim, S.J. Yun, and S.W. Nam, Mater. Sci. Eng. A 371, 82 (2004).CrossRefGoogle Scholar
  10. 10.
    T. Engdahl, V. Hansen, P.J. Warren, and K. Stiller, Mater. Sci. Eng. A 327, 59 (2002).CrossRefGoogle Scholar
  11. 11.
    A. Deschamps and Y. Brechét, Mater. Sci. Eng. A 251, 200 (1998).CrossRefGoogle Scholar
  12. 12.
    X.Z. Li, V. Hansen, J. Gjonnes, and L.R. Wallenberg, Acta Mater. 47, 2651 (1999).CrossRefGoogle Scholar
  13. 13.
    A. Otsuka, K. Tohgo, T. Kiba, and S. Yamada, Fracture 84, 1671 (1984).CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, B. Milkereit, O. Kessler, C. Schick, and P.A. Rometsch, J. Alloys Compd. 584, 581 (2014).CrossRefGoogle Scholar
  15. 15.
    Marco J. Starink, Benjamin Milkereit, Yong Zhang, and Paul A. Rometsch, Mater. Des. 88, 958 (2015).CrossRefGoogle Scholar
  16. 16.
    S.D. Liu, W.J. Liu, Y. Zhang, X.M. Zhang, and Y.L. Deng, J. Alloys Compd. 507, 53 (2010).CrossRefGoogle Scholar
  17. 17.
    Z.H. Zhang, B.Q. Xiong, S.F. Liu, B.H. Zhu, and Y.T. Zuo, Rare Metals 33, 270 (2014).CrossRefGoogle Scholar
  18. 18.
    O.K. Dmitri and S. Susanne, Ultramicroscopy 106, 889 (2006).CrossRefGoogle Scholar
  19. 19.
    B.C. Shang, Z.M. Yin, G. Wang, B. Liu, and Z.Q. Huang, Mater. Des. 32, 3818 (2011).CrossRefGoogle Scholar
  20. 20.
    T. Ogura, S. Hirosawa, A. Cerezo, and T. Sato, Acta Mater. 58, 5714 (2010).CrossRefGoogle Scholar
  21. 21.
    R. Ghiaasiaan, B.S. Amirkhizb, and S. Shankar, Mater. Sci. Eng. A 698, 206 (2017).CrossRefGoogle Scholar
  22. 22.
    M. Tiryakioğlu, J.S. Robinson, and P.D. Eason, Mater. Sci. Eng. A 618, 22 (2014).CrossRefGoogle Scholar
  23. 23.
    J.W. Newkirk and D.S. Mackenzie, J. Mater. Eng. Perform. 9, 408 (2000).CrossRefGoogle Scholar
  24. 24.
    G.P. Dolan, R.J. Flynn, and D.A. Tanner, Mater. Sci. Technol. 21, 687 (2005).CrossRefGoogle Scholar
  25. 25.
    L.H. Lin, Z.Y. Liu, S. Bai, Y.R. Zhou, W.J. Liu, and Q. Lv, Mater. Sci. Eng. A 682, 640 (2017).CrossRefGoogle Scholar
  26. 26.
    S.D. Liu, Q.M. Zhong, Y. Zhang, W.J. Liu, X.M. Zhang, and Y.L. Deng, Mater. Des. 31, 3116 (2010).CrossRefGoogle Scholar
  27. 27.
    G. Sha and A. Cerezo, Acta Mater. 52, 4503 (2004).CrossRefGoogle Scholar
  28. 28.
    C.R. Hutchinson, F.D. Geuser, Y. Chen, and A. Deschamps, Acta Mater. 74, 96 (2014).CrossRefGoogle Scholar
  29. 29.
    J.D. Robson and P.B. Prangnell, Acta Mater. 49, 599 (2001).CrossRefGoogle Scholar
  30. 30.
    Y. Zhang, C. Bettles, and P.A. Rometsch, J. Mater. Sci. 49, 1709 (2014).CrossRefGoogle Scholar
  31. 31.
    D. Godard, P. Archambault, E. Aeby-Gautier, and G. Lapasset, Acta Mater. 50, 2319 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Hu Xie
    • 1
  • Zhu Xiao
    • 1
    • 2
  • Zhou Li
    • 1
    • 3
  • Mingpu Wang
    • 1
    • 4
  • Shuo Ma
    • 1
  • Hongyun Jiang
    • 5
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Key Laboratory of Non-ferrous Metal Materials Science and EngineeringMinistry of EducationChangshaChina
  3. 3.State Key Laboratory for Powder MetallurgyCentral South UniversityChangshaChina
  4. 4.Science and Technology on High Strength Structural Materials LaboratoryCentral South UniversityChangshaChina
  5. 5.Zhejiang Tianning Alloy Material Co. LtdJinhuaChina

Personalised recommendations