, Volume 71, Issue 1, pp 238–245 | Cite as

Properties and Applications of Vapor Infiltration into Polymeric Substrates

  • Wade F. Ingram
  • Jesse S. JurEmail author
Application of Atomic Layer Deposition for Functional Nanomaterials


Metalorganic vapor infiltration into polymeric substrates is a technique that can be used to modify the bulk interior of the polymer material. Founded within atomic layer deposition processing methodology, vapor infiltration occurs through pulses of a precursor gas and reactant to grow metals or metal oxides within a substrate rather than exclusively depositing on the surface. The infiltration behavior has been shown to vary based on the precursor and reactant exposure sequences. Key application areas have been demonstrated in lithographic patterning, nanostructure formation for catalysis, mechanical enhancement, and optical modification.


  1. 1.
    H. Kim, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 21, 2231 (2003).CrossRefGoogle Scholar
  2. 2.
    S.M. George, Chem. Rev. 110, 111 (2009).CrossRefGoogle Scholar
  3. 3.
    M. Schumacher, P.K. Baumann, and T. Seidel, Chem. Vap. Depos. 12, 99 (2006).CrossRefGoogle Scholar
  4. 4.
    J.F. Conley Jr., Y. Ono, and G.M. Stecker, Modulated Temperature Method of Atomic Layer Deposition (ALD) of High Dielectric Constant Films, Oct. 28, 2008. US Patent 7,442,415 (2008).Google Scholar
  5. 5.
    H. Chatham, Surf. Coat. Technol. 78, 1 (1996).CrossRefGoogle Scholar
  6. 6.
    H. Kim, C. Cabral Jr, C. Lavoie, and S. Rossnagel, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 20, 1321 (2002).CrossRefGoogle Scholar
  7. 7.
    P.F. Carcia, R. McLean, M. Reilly, M. Groner, and S. George, Appl. Phys. Lett. 89, 031915 (2006).CrossRefGoogle Scholar
  8. 8.
    T.D. Gould, A.M. Lubers, B.T. Neltner, J.V. Carrier, A.W. Weimer, J.L. Falconer, and J.W. Medlin, J. Catal. 303, 9 (2013).CrossRefGoogle Scholar
  9. 9.
    R. Liu, Y. Lin, L.-Y. Chou, S.W. Sheehan, W. He, F. Zhang, H.J. Hou, and D. Wang, Angew. Chem. 123, 519 (2011).CrossRefGoogle Scholar
  10. 10.
    S. Xie, S.-I. Choi, N. Lu, L.T. Roling, J.A. Herron, L. Zhang, J. Park, J. Wang, M.J. Kim, Z. Xie, M. Mavrikakis, and Y. Xia, Nano Lett. 14, 3570 (2014).CrossRefGoogle Scholar
  11. 11.
    M. Ritala and M. Leskelä, Atomic layer deposition.Handbook of Thin Films, ed. H. Nalwa (New York: Academic Press, 2001), pp. 103–159.Google Scholar
  12. 12.
    B.S. Lim, A. Rahtu, and G. Gordon, Nat. Mater. 2, 749 (2003).CrossRefGoogle Scholar
  13. 13.
    M. Leskelä and M. Ritala, Thin Solid Films 409, 138 (2002).CrossRefGoogle Scholar
  14. 14.
    M. Leskelä and M. Ritala, Angew. Chem. Int. Ed. 42, 5548 (2003).CrossRefGoogle Scholar
  15. 15.
    T. Suntola, Mater. Sci. Rep. 4, 261 (1989).CrossRefGoogle Scholar
  16. 16.
    S. George, A. Ott, and J. Klaus, J. Phys. Chem. 100, 13121 (1996).CrossRefGoogle Scholar
  17. 17.
    Y. Wang, Y. Qin, A. Berger, E. Yau, C. He, L. Zhang, U. Gösele, M. Knez, and M. Steinhart, Adv. Mater. 21, 2763 (2009).CrossRefGoogle Scholar
  18. 18.
    Q. Peng, Y.-C. Tseng, S.B. Darling, and J.W. Elam, Adv. Mater. 22, 5129 (2010).CrossRefGoogle Scholar
  19. 19.
    R.P. Padbury and J.S. Jur, J. Vac. Sci. Technol. A 32, 041602 (2014).CrossRefGoogle Scholar
  20. 20.
    B. Gong and G.N. Parsons, J. Mater. Chem. 22, 15672 (2012).CrossRefGoogle Scholar
  21. 21.
    G.N. Parsons, S.E. Atanasov, E.C. Dandley, C.K. Devine, B. Gong, J.S. Jur, K. Lee, C.J. Oldham, Q. Peng, J.C. Spagnola, and S. Williams, Coord. Chem. Rev. 257, 3323 (2013).CrossRefGoogle Scholar
  22. 22.
    A. Sinha, D.W. Hess, and C.L. Henderson, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 25, 1721 (2007).CrossRefGoogle Scholar
  23. 23.
    K. Gregorczyk and M. Knez, Prog. Mater Sci. 75, 1 (2016).CrossRefGoogle Scholar
  24. 24.
    S.-M. Lee, E. Pippel, U. Gösele, C. Dresbach, Y. Qin, C.V. Chandran, T. Bräuniger, G. Hause, and M. Knez, Science 324, 488 (2009).CrossRefGoogle Scholar
  25. 25.
    B. Gong, J.C. Spagnola, and G.N. Parsons, J. Vac. Sci. Technol. A 30, 01A156 (2012).CrossRefGoogle Scholar
  26. 26.
    B. Gong, Q. Peng, J.S. Jur, C.K. Devine, K. Lee, and G.N. Parsons, Chem. Mater. 23, 3476 (2011).CrossRefGoogle Scholar
  27. 27.
    G. Hyde, S. McCullen, S. Jeon, S. Stewart, H. Jeon, E. Loboa, and G.N. Parsons, Biomed. Mater. 4, 025001 (2009).CrossRefGoogle Scholar
  28. 28.
    M. Biswas, J.A. Libera, S.B. Darling, and J.W. Elam, Chem. Mater. 26, 6135 (2014).CrossRefGoogle Scholar
  29. 29.
    J. Jur, W.J. Sweet, C.J. Oldham, and G.N. Parsons, Adv. Funct. Mater. 21, 1993 (2011).CrossRefGoogle Scholar
  30. 30.
    A.H. Brozena, C.J. Oldham, and G.N. Parsons, J. Vac. Sci. Technol. A 34, 010801 (2016).CrossRefGoogle Scholar
  31. 31.
    J. Lee, J. Yoon, H.G. Kim, S. Kang, W.-S. Oh, H. Algadi, S. Al-Sayari, B. Shong, S.-H. Kim, H. Kim, T. Lee, and H.-B.-R. Lee, NPG Asia Mater. 8, e331 (2016).CrossRefGoogle Scholar
  32. 32.
    W.F. Ingram, J.C. Halbur, A. Madan, and J.S. Jur, J. Vac. Sci. Technol. A 36, 031512 (2018).CrossRefGoogle Scholar
  33. 33.
    A. Hatamie, A. Khan, M. Golabi, A.P. Turner, V. Beni, W.C. Mak, A. Sadollahkhani, H. Alnoor, B. Zargar, S. Bano, O. Nur, and M. Willander, Langmuir 31, 10913 (2015).CrossRefGoogle Scholar
  34. 34.
    D.T. Lee, J. Zhao, G.W. Peterson, and G.N. Parsons, Chem. Mater. 29, 4894 (2017).CrossRefGoogle Scholar
  35. 35.
    X. Liang, A.D. Lynn, D.M. King, S.J. Bryant, and W. Weimer, ACS Appl. Mater. Interfaces. 1, 1988 (2009).CrossRefGoogle Scholar
  36. 36.
    H.I. Akyildiz, R.P. Padbury, G.N. Parsons, and J.S. Jur, Langmuir 28, 15697 (2012).CrossRefGoogle Scholar
  37. 37.
    T. Suntola and J. Antson, Method for Producing Compound Thin Films, Nov. 15, 1977. US Patent 4,058,430 (1977).Google Scholar
  38. 38.
    S. George, P. Fitzpatrick, and Z. Gibbs, Atomic layer deposition for continuous roll-to-roll processing, in 54th Technical Conference Proceedings of the Society of Vacuum Coaters (SVC), pp. 76–81 (2011).Google Scholar
  39. 39.
    P. Poodt, A. Lankhorst, F. Roozeboom, K. Spee, D. Maas, and A. Vermeer, Adv. Mater. 22, 3564 (2010).CrossRefGoogle Scholar
  40. 40.
    E. Dickey and W.A. Barrow, J. Vac. Sci. Technol. A 30, 021502 (2012).CrossRefGoogle Scholar
  41. 41.
    K. Ali, K.-H. Choi, J. Jo, and Y.W. Lee, Mater. Lett. 136, 90 (2014).CrossRefGoogle Scholar
  42. 42.
    Data Sheet on TFS 200R reactor from Beneq Oy. Vantaa, Finland.
  43. 43.
    D.C. Camer, Continuous and Roll- to-Roll Atomic Layer Deposition. Presented at Baltic ALD 2010 & GerALD 2, Hamburg, Germany, September 17 (2010).Google Scholar
  44. 44.
    P.S. Maydannik, T.O. Kaariainen, and D.C. Cameron, J. Vac. Sci. Technol. A 30, 01A122 (2012).CrossRefGoogle Scholar
  45. 45.
    R.A. Caruso and M. Antonietti, Chem. Mater. 13, 3272 (2001).CrossRefGoogle Scholar
  46. 46.
    J.W. Galusha, C.-K. Tsung, G.D. Stucky, and H. Bartl, Chem. Mater. 20, 4925 (2008).CrossRefGoogle Scholar
  47. 47.
    Y. Sun, R.P. Padbury, H.I. Akyildiz, M.P. Goertz, J.A. Palmer, and J.S. Jur, Chem. Vap. Depos. 19, 134 (2013).CrossRefGoogle Scholar
  48. 48.
    R.P. Padbury and J.S. Jur, J. Vac. Sci. Technol. A 33, 01A112 (2015).CrossRefGoogle Scholar
  49. 49.
    S.-M. Lee, E. Pippel, O. Moutanabbir, I. Gunkel, T. Thurn-Albrecht, and M. Knez, ACS Appl. Mater. Interfaces. 2, 2436 (2010).CrossRefGoogle Scholar
  50. 50.
    K.E. Gregorczyk, D.F. Pickup, M.G. Sanz, I.A. Irakulis, C. Rogero, and M. Knez, Chem. Mater. 27, 181 (2014).CrossRefGoogle Scholar
  51. 51.
    H.G. Limberger, D. Varelas, R.-P. Salathe, and G. Kotrotsios, Doped Fiber Devices 2841, 84 (1996).CrossRefGoogle Scholar
  52. 52.
    M. Said, B. Dingwall, A. Gupta, A. Seyam, G. Mock, and T. Theyson, Adv. Space Res. 37, 2052 (2006).CrossRefGoogle Scholar
  53. 53.
    M.E. Calvo, J.R. Castro Smirnov, and H. Míıguez, J. Polym. Sci. Part B: Polym. Phys. 50, 945 (2012).CrossRefGoogle Scholar
  54. 54.
    J.M. Gosline, M.E. DeMont, and M.W. Denny, Endeavour 10, 37 (1986).CrossRefGoogle Scholar
  55. 55.
    S.-M. Lee, E. Pippel, O. Moutanabbir, J.-H. Kim, H.-J. Lee, and M. Knez, ACS Appl. Mater. Interfaces 6, 16827 (2014).CrossRefGoogle Scholar
  56. 56.
    H.I. Akyildiz, M. Lo, E. Dillon, A.T. Roberts, H.O. Everitt, and J.S. Jur, J. Mater. Res. 29, 2817 (2014).CrossRefGoogle Scholar
  57. 57.
    H.I. Akyildiz, M.B.M. Mousa, and J.S. Jur, J. Appl. Phys. 117, 045301 (2015).CrossRefGoogle Scholar
  58. 58.
    A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M.D. Eisaman, and C.T. Black, Nat. Commun. 6, 5963 (2015).CrossRefGoogle Scholar
  59. 59.
    D. Berman, S. Guha, B. Lee, J.W. Elam, S.B. Darling, and E.V. Shevchenko, ACS Nano 11, 2521 (2017).CrossRefGoogle Scholar
  60. 60.
    W.J. Sweet III, C.J. Oldham, and G.N. Parsons, J. Vac. Sci. Technol. A 33, 01A117 (2015).CrossRefGoogle Scholar
  61. 61.
    W. Wang, F. Yang, C. Chen, L. Zhang, Y. Qin, and M. Knez, Adv. Mater. Interfaces 4, 1600806 (2017).CrossRefGoogle Scholar
  62. 62.
    J. Dong, J. Liu, G. Kang, J. Xie, and Y. Wang, Sci. Rep. 4, 5618 (2014).CrossRefGoogle Scholar
  63. 63.
    J. Kwak, A.K. Mishra, J. Lee, K.S. Lee, C. Choi, S. Maiti, M. Kim, and J.K. Kim, Macromolecules 50, 6813 (2017).CrossRefGoogle Scholar
  64. 64.
    O.M. Ishchenko, S. Krishnamoorthy, N. Valle, J. Guillot, P. Turek, I. Fechete, and D. Lenoble, J. Phys. Chem. C 120, 7067 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighUSA
  2. 2.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations